Supplementary Information (ESI)

Preparation of phosphorescent crystalline tris(1-phenylisoquinoline) iridium nanobelts via a recrystallization method

Debao Xiao,* Haiyan Xiao, Lili Liu, and Xueling Li

Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Avenue, Qinhuangdao 066004, P.R. China
E-mail: debao.xiao@ysu.edu.cn; Fax:+86 335 8061569; Tel: +86 335 8061569

Figure S-1. Packing mode of Ir(piq)₃ molecules along (1 0 0) face in crystal cell of the single crystals and the nanobelts.

Figure S-2. FT-IR spectra of the as-prepared Ir(piq)₃ nanobelts and Ir(piq)₃ bulk crystals, indicating that no chemical modification of Ir(piq)₃ molecules occurred in the as-obtained nanobelts during the recrystallization process in hot solvent.
Figure S-3a. The existence of spectral overlap between the optical absorption of Ir(piq)$_3$ and photoluminescence of Ir(ppy)$_3$, indicating the possibility of occurrence of resonance energy transfer from Ir(ppy)$_3$ to Ir(piq)$_3$.

(1) Ir(ppy)$_3$, Ir(piq)$_3$ and their doping system are all solubilized by polyvinyl alcohol (PVA) in water.
(2) Ir(ppy)$_3$, Ir(piq)$_3$ and their doping system are all solubilized by cetyltrimethylammonium bromide (CTAB) in water.

Figure S-3b. Enhanced photoluminescence of Ir(piq)$_3$ by the resonance energy transfer from the energy donor Ir(ppy)$_3$ in the doping system of Ir(ppy)$_3$/Ir(piq)$_3$ solubilized by (1) PVA and (2) CTAB.

Figure S-4. A triplet energy level diagram has been depicted according to Ref. 19.