【Electronic Supplementary Information】

Selective fluoride sensing using organic-inorganic hybrid nanomaterials containing anthraquinone

Eunjeong Kim, a Hyun Jung Kim, b Doo Ri Bae, a Soo Jin Lee, a Eun Jin Cho, c Moo Ryeong Seo, a Jong Seung Kim*b and Jong Hwa Jung a

a Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701, S. Korea. Fax No.: +82-55-758-6027; E-mail: jonghwa@gnu.ac.kr.
b Department of Chemistry, Korea University, Seoul 136-701, S. Korea.
c Department of Materials Science and Engineering, KAIST, Daejeon 305-701, S. Korea

Table of Contents:

Title and table of contents .. S1
Fig. S1 Thermogravimetric analysis data of (a) AFMS and (b) AFSP .. S2
Fig. S2 IR spectra of (a) mesoporous silica and (b) AFMS ... S3
Fig. S3 The nitrogen adsorption-desorption isotherms of AFSP .. S4
Fig. S4 Fluorescent spectra of (A) receptor 1 and (B) mesoporous silica .. S5
Fig. S5 Fluorescent spectra of anthraquinone by the addition of fluorodie ion ... S6
Fig. S6 Fluorescent spectra of AFSP ... S7
Fig. S7 IR spectra of (a) AFMS and (b) F- loaded AFMS .. S8
Fig. S8 EDX spectrum of AFMS loaded F- .. S9
Fig. S9 Fluorescent spectra of AFMS by addition of basic anions .. S10
Fig. S10 Immobilization method of receptor 1 onto glass slide .. S11
Fig. S11 Fluorescent spectra of AFMS by addition of tetrabutylammonium fluoride in the presence of other anions in water S12
Fig. S12 Calibration curve of fluoride ion against intensity of AFMS by addition of tetrabutylammonium fluoride S13
Table S1 Fluorescence changes (I/Io) of AFMS upon addition of various anions S14
Table S2 Fluorescence changes (I/Io) of 1 upon addition of various anions S14
Fig. S1 Thermogravimetric analysis data of (a) AFMS and (b) AFSP.
Fig. S2 IR spectra of (a) mesoporous silica and (b) AFMS.
Fig. S3 The nitrogen adsorption-desorption isotherms of AFSP.
Fig. S4 Fluorescent spectra of (A) receptor 1 (0.2 mM) and (B) mesoporous silica (5.0 mg) by addition of tetrabutylammonium anions (20.0 equiv) in water: (a) none, (b)HSO$_4^-$, (c)Br$^-$, (d)Cl$^-$, (e) I$^-$ and (f) F$^-$.
Fig. S5 Fluorescent spectra of anthraquinone (1.0 x 10^{-3} M) by the addition of anions (5.0 equiv) in acetonitrile.
Fig. S6 Fluorescent spectra of **AFSP** (5.0 mg) by addition of tetrabutylammonium anions (20.0 equiv) in water.
Fig. S7 IR spectra of (a) free-AFMS and (b) F--loaded AFMS.
Fig. S8 EDX spectrum of F⁻ loaded AFMS.
Fig. S9 Fluorescent spectra of AFMS (0.3 mg) by the addition of basic anions (5.0 equiv) in water.
Fig. S10 Immobilization method of receptor 1 onto glass slide.
Fig. S11 Fluorescent spectra of AFMS by addition of tetrabutylammonium fluoride in the presence of other anions (20 equiv.) in water.
Calibration curve of concentration of fluoride ion against intensity of AFMS.

Fig. S12 Calibration curve of concentration of fluoride ion against intensity of AFMS.
Table S1 Fluorescence changes (I/I_o) of AFMS upon addition of various anions.

<table>
<thead>
<tr>
<th>$\lambda_{em}\text{ (nm)}$</th>
<th>F$^-$</th>
<th>Cl$^-$</th>
<th>Br$^-$</th>
<th>I$^-$</th>
<th>HSO$_4^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>0.37</td>
<td>0.88</td>
<td>0.91</td>
<td>0.88</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Condition: AFMS (5.0 mg) in H$_2$O, excitation at 420 nm; anions, 20.0 equiv in H$_2$O. I_o: fluorescence emission intensity of AFMS; I: fluorescence emission intensity of AFMS in the presence of anions.

Table S2 Fluorescence changes (I/I_o) of receptor 1 upon addition of various anions.

<table>
<thead>
<tr>
<th>$\lambda_{em}\text{ (nm)}$</th>
<th>F$^-$</th>
<th>Cl$^-$</th>
<th>Br$^-$</th>
<th>I$^-$</th>
<th>HSO$_4^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>425</td>
<td>0.04</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Condition: receptor 1, 0.2 mM in H$_2$O, excitation at 420 nm; anions, 20.0 equiv in H$_2$O. I_o: fluorescence emission intensity of receptor 1; I: fluorescence emission intensity of receptor 1 in the presence of anions.