Highly Luminescent Water Soluble Lanthanide Nanoparticles through Surface Coating Sensitization

Loïc J. Charbonnière,* Jean-Luc Rehspringer, Raymond Ziessel, and Yvan Zimmermann

Supplementary Information (2 pages including this one)

Figure S1. Dynamic Light Scattering analysis of LaEuF₃·AEP and LaEuF₃·(bipyCOO⁻) LnNPs in water.

Figure S2. Time dependent evolution of the absorption (305 nm, blue) and emission (λₑₓ𝑐 = 305 nm, λₑᵐ = 610 nm, red) of a 2 mL solution of LaEuF₃·AEP (35.2 mg.L⁻¹, 0.01 M TRIS/HCl, pH=7.0) after addition of 250 µL of a 10⁻³ M solution of bipyCOO⁻ in the same buffer.

Figure S3. Evolution of the europium emission intensity of LnNPs (c = 50.2 mg.L⁻¹, λₑₓ𝑐 = 305 nm) as a function of added bipyCOO⁻ (c = 1.12×10⁻³ M) in TRIS/HCl 0.01M buffer at pH = 7.0, showing the plateau region for large excesses of added ligand.

Figure S1. Dynamic Light Scattering analysis of LaEuF₃·AEP (left) and LaEuF₃·(bipyCOO⁻) (right) LnNPs in water.
Figure S2. Time dependent evolution of the absorption (305 nm, blue) and emission ($\lambda_{\text{exc}} = 305$ nm, $\lambda_{\text{em}} = 610$ nm, red) of a 2 mL solution of LaEuF$_3$.AEP (35.2 mg.L$^{-1}$, 0.01 M TRIS/HCl, pH=7.0) after addition of 250 µL of a 10^{-3} M solution of bipyCOO- in the same buffer.

Figure S3. Evolution of the europium emission intensity of LnNPs ($c = 50.2$ mg.L$^{-1}$, $\lambda_{\text{exc}} = 305$ nm) as a function of added bipyCOO- ($c = 1.12\times10^{-3}$ M) in TRIS/HCl 0.01M buffer at pH = 7.0, showing the plateau region for large excesses of added ligand.