Reusable polystyrene-supported Pd catalyst for Mizoroki-Heck reactions with extremely low amounts of supported Pd

Carine Diebold, Stéphane Schweizer, Jean-Michel Becht* and Claude Le Drian*

Université de Haute Alsace
Institut de Science des Matériaux de Mulhouse, LRC-CNRS 7228
15 rue Jean Starcky, 68057 Mulhouse cedex, France
email: jean-michel.becht@uha.fr

ELECTRONIC SUPPLEMENTARY INFORMATION

Table of contents

General Remarks 2
Characterizations of Alkenes 2a-i 2
Copies of ¹H NMR Spectra of Alkenes 2a-i 4-12
References 13
General Remarks. The reagents were obtained from commercial sources and were used without further purifications. Catalysts \(1a\) and \(1b\) were prepared according to previous reports from our group.\(^1\) The syntheses of compounds \(2a-i\) were performed in dry glassware under an atmosphere of argon. The reaction mixtures were filtered on a polytetrafluoroethylene Whatman membrane (0.2 µm). \(^1\)H NMR spectra were recorded using a 400 MHz instrument in CDCl\(_3\). Chemical shifts are reported in parts per million (δ) downfield from TMS. Spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet) and m (multiplet). The \(^1\)H NMR spectra of biaryls \(2a-i\) were in accordance with literature reports (see below).

(E)-Methyl-3-Phenylpropenoate (2a): Elution with AcOEt / Cyclohexane 1 : 9 afforded 1.60 g (99% yield) of a white solid; mp 37-38 °C (lit. mp 38 °C).\(^2\) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 3.82 (s, 3H), 6.45 (d, \(3J = 16.0\) Hz, 1H), 7.39 (m, 3H), 7.54 (m, 2H), 7.72 (d, \(3J = 16.0\) Hz).

(E)-Methyl-3-(4-Methylphenyl)propenoate (2b): Elution with AcOEt / Cyclohexane 1 : 9 afforded 1.60 g (91% yield) of a white solid; mp 58-59 °C (lit. mp 57-58 °C).\(^4\) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 2.37 (s, 3H), 3.80 (s, 3H), 6.40 (d, \(3J = 16.0\) Hz, 1H), 7.18 (d, \(3J = 8.0\) Hz, 2H), 7.41 (d, \(3J = 8.0\) Hz, 2H), 7.68 (d, \(3J = 16.0\) Hz, 1H).

(E)-Methyl-3-(3-Methylphenyl)propenoate (2c): Elution with AcOEt / Cyclohexane 1 : 9 afforded 1.74 g (99% yield) of a colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 2.36 (s, 3H), 3.81 (s, 3H), 6.43 (d, \(3J = 16.0\) Hz, 1H), 7.27 (m, 4H), 7.38 (d, \(3J = 16.0\) Hz, 1H).

(E)-Methyl-3-(2-Methylphenyl)propenoate (2d): Elution with AcOEt / Cyclohexane 1 : 9 afforded 1.74 g (99% yield) of a yellow oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 2.28 (s, 3H), 3.66 (s, 3H), 6.22 (d, \(3J = 15.8\) Hz, 1H), 7.08 (m, 3H), 7.38 (d, \(3J = 7.8\) Hz, 1H), 7.84 (d, \(3J = 15.8\) Hz, 1H).

(E)-Methyl-3-(4-Methoxyphenyl)propenoate (2e): Elution with AcOEt / Cyclohexane 1 : 9 afforded 1.85 g (96% yield) of a yellow solid; mp 87-88 °C (lit. mp 89-90 °C).\(^6\) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 3.68 (s, 3H), 3.71 (s, 3H), 6.20 (d, \(3J = 16.1\) Hz, 1H), 6.78 (d, \(3J = 8.8\) Hz, 2H), 7.35 (d, \(3J = 8.8\) Hz, 2H), 7.54 (d, \(3J = 16.1\) Hz, 1H).

(E)-Methyl-3-(2-Bromophenyl)propenoate (2f): Elution with AcOEt / Cyclohexane 1 : 9 afforded 2.38 g (99% yield) of a yellow oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 3.71 (s, 3H), 6.26 (d, \(3J = 16.1\) Hz, 1H), 7.13 (m, 2H), 7.46 (m, 2H), 7.93 (d, \(3J = 16.1\) Hz, 1H).

(E)-Methyl-3-(4-Acetylphenyl)propenoate (2g): Elution with AcOEt / Cyclohexane 1 : 9 afforded 2.0 g (98% yield) of a yellow solid; mp 112-114 °C (lit. mp 113-115 °C).\(^7\) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 2.46 (s, 3H), 3.67 (s, 3H), 6.35 (d, \(3J = 16.1\) Hz, 1H), 7.43 (d, \(3J = 8.3\) Hz, 2H), 7.52 (d, \(3J = 16.1\) Hz, 1H), 7.80 (d, \(3J = 8.3\) Hz, 2H).

(E)-Methyl-3-(3-Trifluoromethylphenyl)propenoate (2h): Elution with AcOEt / Cyclohexane 1 : 9 afforded 2.28 g (99% yield) of a yellow solid; mp 112-114 °C (lit. mp 113-115 °C).\(^4\) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm): 3.82 (s, 3H), 6.50 (d, \(3J = 16.1\) Hz, 1H), 7.51 (m, 1H), 7.62 (m, 1H), 7.70 (m, 2H), 7.73 (d, \(3J = 16.1\) Hz, 1H).
(E)-Methyl-3-[2-Ethoxycarbonyl]phenyl]propenoate (2i): Elution with AcOEt / Cyclohexane 1 : 9 afforded 2.32 g (99% yield) of a yellow solid; mp 112-114 °C (lit. mp 113-115 °C). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.36 (t, ³J = 7.3 Hz, 3H), 3.76 (s, 3H), 4.34 (q, ³J = 7.3 Hz, 2H), 6.25 (d, ³J = 15.9 Hz, 1H), 7.39 (m, 3H), 7.93 (m, 1H), 8.42 (d, ³J = 15.9 Hz, 1H).
Chemical Structure:

![Chemical structure of compound 2a](image)

NMR Spectroscopy:

- **1H NMR, 400 MHz, CDCl₃**

<table>
<thead>
<tr>
<th>Chemical Shift (ppm)</th>
<th>Integrated Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9826</td>
<td></td>
</tr>
<tr>
<td>1.9906</td>
<td></td>
</tr>
<tr>
<td>2.9226</td>
<td></td>
</tr>
<tr>
<td>3.0000</td>
<td></td>
</tr>
<tr>
<td>3.8200</td>
<td></td>
</tr>
<tr>
<td>7.2700</td>
<td></td>
</tr>
<tr>
<td>7.3896</td>
<td></td>
</tr>
<tr>
<td>7.3965</td>
<td></td>
</tr>
<tr>
<td>7.4047</td>
<td></td>
</tr>
<tr>
<td>7.5261</td>
<td></td>
</tr>
<tr>
<td>7.5311</td>
<td></td>
</tr>
<tr>
<td>7.5399</td>
<td></td>
</tr>
<tr>
<td>7.5487</td>
<td></td>
</tr>
<tr>
<td>7.5903</td>
<td></td>
</tr>
<tr>
<td>7.6903</td>
<td></td>
</tr>
<tr>
<td>7.7306</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Supplementary Material (ESI) for Organic & Biomolecular Chemistry
- This journal is (c) The Royal Society of Chemistry 2010
1H NMR, 400 MHz, CDCl$_3$
2c

1H NMR, 400 MHz, CDCl$_3$
1H NMR, 400 MHz, CDCl₃

In integral

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2010
1H NMR, 400 MHz, CDCl$_3$

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2010
Br \(\equiv \text{CO}_2\text{Me} \)

\(2f \)

\(^1\text{H NMR, 400 MHz, CDCl}_3 \)

1H NMR, 400 MHz, CDCl₃

![NMR Spectrum](image)

Integrals

|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2010
1H NMR, 400 MHz, CDCl$_3$

F$_3$C

2h

1H NMR, 400 MHz, CDCl$_3$
2i

1H NMR, 400 MHz, CDCl$_3$
References:

