Electronic Supplementary Information (ESI) for

Synthesis of Sulfone-based Nucleotide Isosteres: Identification of CMP-Synthetase Inhibitors

Jessica H. Wong,[‡] Urvashi Sahni, Yanhong Li, Xi Chen, and Jacquelyn Gervay-Hague^a

^a Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, U.S.A.: Fax: 530 752-8995; Tel: 530 754 9577; E-mail: gervay@chem.ucdavis.edu.

[‡] Recipient of the ACS Glaxo Smith-Kline Fellowship 2008.

Table of Contents

Contents	Page Number
General Experimental Techniques	4
Experimental Procedure for compound 4	5
Experimental Procedure for compound 5	6
Experimental Procedure for compound 7	7-8
Experimental Procedure for compound 8	8-9
Experimental Procedure for compound 9	10
Experimental Procedure for compound 10	11-12
Experimental Procedure for compound 11	12-13
Experimental Procedure for compound 12	13-14
Experimental Procedure for compound 14	14-15
Experimental Procedure for compound 15	15-16
Experimental Procedure for compound 16	16-17
Experimental Procedure for compound 17	17-18
Experimental Procedure for compound 18	

Experimental Procedure for compound 1919	-20
Experimental Procedure for compound 2020	-21
Experimental Procedure for compound 21	.21
Experimental Procedure for compound 22	.22
NmCSS Substrate Assay22-	-23
NmCSS Inhibition Assay	23
¹ H Spectra for compound 4	.24
¹³ C Spectra for compound 4	.25
HRMS Spectra for compound 4	26
CE Spectra for compound 4	.27
¹ H Spectra for compound 5	.28
¹³ C Spectra for compound 5	.29
HRMS Spectra for compound 5	.30
CE Spectra for compound 5	.31
¹ H Spectra for compound 7	.32
¹³ C Spectra for compound 7	.33
HRMS Spectra for compound 7	.34
¹ H Spectra for compound 8	.35
¹³ C Spectra for compound 8	.36
HRMS Spectra for compound 8	.37
¹ H Spectra for compound 9	.38
¹³ C Spectra for compound 9	39
HRMS Spectra for compound 9	40
¹ H Spectra for compound 10	41
¹³ C Spectra for compound 10	.42
HRMS Spectra for compound 10	.43
CE Spectra for compound 10	.44
¹ H Spectra for compound 11	.45
¹³ C Spectra for compound 11	.46
HRMS Spectra for compound 11	.47
¹ H Spectra for compound 12	48
¹³ C Spectra for compound 12	.49
HRMS Spectra for compound 12	.50
CE Spectra for compound 12	.51
¹ H Spectra for compound 14	.52
¹³ C Spectra for compound 14	53
HRMS Spectra for compound 14	.54
¹ H Spectra for compound 15	.55
¹³ C Spectra for compound 15	56
HRMS Spectra for compound 15	.57
¹ H Spectra for compound 16	.58
¹³ C Spectra for compound 16	.59
HRMS Spectra Spectra for compound 16	60
¹ H Spectra for compound 17	.61
¹³ C Spectra for compound 17	62
HRMS Spectra for compound 17	.63

¹ H Spectra for compound 18	64
¹³ C Spectra for compound 18	65
HRMS Spectra for compound 18	66
¹ H Spectra for compound 19	67
¹³ C Spectra for compound 19	.68
HRMS Spectra for compound 19	69
HPLC Spectra for compound 19	70
¹ H Spectra for compound 20	71
¹³ C Spectra for compound 20	72
HRMS Spectra for compound 20	73
HPLC Spectra Spectra for compound 20	.74
¹ H Spectra for compound 21	75
¹³ C Spectra for compound 21	76
HRMS Spectra for compound 21	77
HPLC Spectra for compound 21	.78
¹ H Spectra for compound 22	79
^{1°} C Spectra for compound 22	80
HRMS Spectra for compound 22	81
HPLC Spectra for compound 22	.82
CE spectrum for CTP (1 mM)	83
CE spectrum for UTP (1 mM)	84
CE spectrum for CDP (1 mM)	85
CE spectrum for UDP (1 mM)	86
CE spectrum for CTP (5 mM)	87
CE spectrum for UTP (5 mM)	88
CE spectrum for CDP (5 mM)	89
CE spectrum for UDP (5 mM)	90
CE spectrum for CTP (10 mM)	91
CE spectrum for UTP (10 mM)	92
CE spectrum for CDP (10 mM)	93
CE spectrum for controls 94	-95
CE spectrum for compound 4	96
CE spectrum for compound 5	97
CE spectrum for compound 12	98
CE spectrum for compound 19	
CE spectrum for compound 20	100
CE spectrum for compound 21	101
CE spectrum for compound 22	102
CE spectrum for CDP	103
Kererence	104

Materials and General Methods.

All chemicals were used as supplied without further purification. Solvents (MeOH 99.8%, CH₂Cl₂ 99.8%, DMF 99.8%, THF 99.9%) were purchased in anhyd DriSolv[™], used without further purification, and stored under argon. Glass-backed TLC plates (Silica Gel 60 with a 254 nm fluorescent indicator) were cut into 2 cm x 5 cm portions, used without further manipulation, and stored over desiccant. Developed TLC plates were visualized under a short-wave UV lamp, treated with a cerium-molybdate solution and charred. Column chromatography was conducted using flash silica gel (32-63 um). NMR experiments (1D and 2D) were conducted on Varian NMRS 600 and Bruker Advance-III 600 MHz spectrometers at 295K. Optical rotation was recorded on 370 Polarimeter and Autopol IV Automatic Polarimeter at 589 nm wavelength. High resolution mass spectra were recorded in ESI-Orbitrap instrument. Final compounds were purified on reverse-phase HPLC (Vydac, C18, 10 mm X 250 mm). All reactions were carried out in dry glassware that was flamed dried and put under argon. All enzymatic reactions were analyzed using a P/ACETM MDQ Capillary Electrophoresis System equipped with a UV detector of 200 and 254 nm wavelengths.

(E)-2-((2R,3S,4S,5R)-5-(4-Amino-2-oxo-2H-pyrimidin-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl]-vinylsulfonylmethylsulfonylmethyl)-phosphonic acid (4). To a stirred solution of compound **7** (21 mg, 0.03 mmol) in dry CH_2Cl_2 (0.5 mL) was added TMSBr (71 uL, 0.6 mmol) at 0 °C dropwise via a syringe. The mixture was warmed to room temperature and stirred for 36 h. The volatiles were then removed by rotary evaporation. The residue was dissolved in MeOH (1 mL), stirred for 40 min, and then concentrated in vacuo. The residue was coevaporated with MeOH (1 mL) three more times. The mixture was then subjected to RP HPLC (water:methanol 95%:5%) to give compound 4 (10 mg) in $[\alpha]_{D}^{24}$ = 3.6° (c. 0.07, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.65 84% vield. (d, J = 7.8 Hz, 1H, H-6), 7.17 (dd, J = 15, 3.6 Hz, 1H, H-5'), 7.00 (dd, J = 15, 1.8)Hz, 1H, H-6'), 6.20 (d, J = 7.8 Hz, 1H, H-5), 5.99 (d, J = 3 Hz, 1H, H-1'), 4.68 (app m, 1H, H-4'), 4.25 (dd, J = 5.4, 1.2 Hz, 1H, H-2'), 4.11 (dd, J = 6.6, 4.8 Hz)1H, H-3'), 4.05 (d, J = 15.0 Hz, 2H, PCH₂S), hydrogens between S and S (SCH₂S) were not observed due to exchanged with deuterium. ¹³C NMR (150 MHz, CD₃OD): δ 167.7, 158.4, 147.6, 142.7, 130.1, 96.8, 92.8, 82.2, 75.3, 74.0, 67.0. Carbons between S and S were not observed due to exchanged with HRMS (ESI+) m/z calcd for $C_{12}H_{18}N_3O_{11}PS_2Na$ (M + Na)⁺ is deuterium. 498.0018, found (M + Na)⁺ 498.0029.

(E)-2-((2R,3S,4S,5R)-5-(4-Amino-2-oxo-2H-pyrimidin-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)vinylsulfonyl)methylphosphonic acid (5). To a stirred solution of compound **8** (63 mg, 0.08 mmol) in dry CH_2CI_2 (0.5 mL) was added TMSBr (220 uL, 1.7 mmol) at 0 °C dropwise via a syringe. The mixture was warmed to room temperature and stirred for 36 h. The volatiles were then removed by rotary evaporation. The residue was dissolved in MeOH, stirred for 40 min, and then concentrated in vacuo. The residue was coevaporated with MeOH (1 mL) three more times. The mixture was then subjected to RP HPLC (water:methanol 95%:5%) to give compound **5** (27 mg, 82%). $[\alpha]_{D}^{31} = + 19^{\circ}$ (c. 0.6, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 8.01 (d, J = 7.2 Hz, 1H, H-6), 7.04 (app s, 2H, H-5' and H-6'), 6.26 (d, J = 7.8 Hz, 1H, H-5), 5.92 (d, J = 3.6 Hz, 1H, H-1'), 4.71 (d, J = 6.6 Hz, 1H, H-4'), 4.30 (dd, J = 8.4 Hz, 3.6 Hz, 1H, H-2'), 4.16 (dd, J = 11.4, 6.6 Hz, 1H, H-3'), 3.62 (dd, J = 15.6, 6.6 Hz, 2H, PCH₂S). ¹³CNMR (150 MHz, CD₃OD): δ 161.1, 149.1, 146.3, 144.0, 131.2, 106.1, 96.0, 92.6, 82.8, 74.6, 73.8. HRMS (ESI+) m/z calcd for $C_{11}H_{17}N_3O_9PS$ (M + H)⁺ is 398.0423, found (M + H)⁺ 398.0420.

Diisopropyl-(E)-2-((2R,3R,4S,5R)-5-(4-acetamido-2-oxo-2H-pyrimidin-1-vl)-3. 4-bis-(*tert*-butyl-dimethyl-silyloxy)-tetrahydrofuran-2-yl)vinylsulfonylmethyl sulfonyl)methylphosphonate (7). To a stirred solution of disulfone reagent 2^{1} (50 mg, 0.1 mmol) in dry THF (0.5 mL) was added LiBr (26 mg, 0.3 mmol) until dissolved, followed by diisopropylethylamine (50 uL, 0.3 mmol) under argon at room temperature. The solution was stirred for 15 min and a solution of the crude 5'-cytidine aldehyde, 6² (34 mg, 0.07 mmol), in THF (0.5 mL) was added dropwise via a syringe. The solution was stirred for 3 h at room temperature under argon and concentrated in vacuo. After flash-silica chromatography (75%) EtOAc: 25% hexane), compound 7 (37 mg), an amorphous solid, was obtained in 67% yield. $[\alpha]_D^{24} = +73.5^{\circ}$ (c. 0.26, EtOAc). ¹H NMR (600 MHz, CDCl₃): δ 8.97 (s, 1H, NH), 7.59 (app m. 2H, H-6 and H-6'), 7.06 (dd, J = 15, 2.4 Hz, 1H, H-5'), 5.81 (app s, 1H, H-1'), 5.56 (d, J = 15.6 Hz, 1H, SCHS), 5.33 (d, J = 15 Hz, 1H, SCHS), 4.90-4.84 (m, 2H, CH of isopropyls), 4.80 (d, J = 4.8 Hz, 1H, H-4'), 4.23-4.18 (m, 2H, H-2' and PCHS), 3.87 (app t, J = 16.2 Hz, 1H, PCHS), 3.80 (dd, J = 8.4, 4.2 Hz, 1H, H-3'), 2.21 (s, 3H), 1.39 (d, J = 6 Hz, 12 H, isopropyls), 0.89 (d, J = 4.2 Hz, 18H, CH₃ of *tert*-butyl groups), 0.22 (s, 3H, CH₃ attached to silyls), 0.12 (s, 3H, CH₃ attached to silyls), 0.05 (s, 3H, CH₃ attached to silyls), 0.03 (s, 3H, CH₃ attached to silves). ¹³C NMR (150 MHz, CDCl₃): δ 170.6, 162.6, 155.0, 144.7, 144.1, 130.1, 96.9, 93.4, 80.3, 75.0, 73.9, 73.6, 73.5, 70.0, 51.4, 25.94 (3), 25.91 (3), 25.0, 24.31, 24.29, 23.92, 23.89, 18.21, 18.16, -4.2 (2), -4.9 (2). HRMS (ESI+) m/z calcd for $C_{32}H_{61}N_3O_{12}PS_2Si_2$ (M + H)⁺ is 830.2973, found (M + H)⁺ 830.2967.

Diisopropyl-(*E*)-2-((*2R*, *3R*, *4S*, *5R*)-5-(4-acetamido-2-oxo-2*H*-pyrimidin-1-yl)-3,4-bis-(*tert*-butyl-dimethyl-silyloxy)-tetrahydrofuran-2-yl)vinylsulfonyl) methylphosphonate (8). To a stirred solution of monosulfone reagent 3^3 (495 mg, 1.2 mmol) in dry THF (1.7 mL) was added LiBr (305 mg, 3.5 mmol) until dissolved, followed by diisopropylethylamine (580 uL, 3.5 mmol) under argon at room temperature. The solution was stirred for 15 min and a solution of the crude 5'-cytidine aldehyde, 6^2 (405 mg, 0.8 mmol), in THF (1.7 mL) was added dropwise via a syringe. The solution was stirred 3 h and concentrated in vacuo. After flash-silica chromatography (75% EtOAc: 25% hexane), an amorphous solid product, **8** (416 mg, 70% yield) was obtained. $[\alpha]_D^{24} = + 84.3^\circ$ (*c*. 0.34, EtOAc). ¹H NMR (600 MHz, CDCl₃): δ 8.45 (s, 1H, NH), 7.98 (d, *J* = 7.8 Hz, 1H, H-6), 7.45 (d, *J* = 7.2 Hz, 1H, H-5), 7.13 (dd, *J* = 15, 1.8 Hz, 1H, H-6'), 7.04 (dd, *J* = 15.6, 4.2 Hz, 1H, H-5'), 5.80 (s, 1H, H-1'), 4.86-4.81 (m, 2H, CH of isopropyls),

4.27 (app. d, J = 2.4 Hz, 1H, H-4'), 3.79 (dd, J = 8.4, 4.2 Hz, 1H, H-2'), 3.64 (app t, J = 15.9 Hz, 1H, PCHS), 3.55 (app t, J = 15.9 Hz, 1H, PCHS), 3.49 (d, J = 4.8Hz, 1H, H-3'), 2.23 (s, 3H, CH₃ of acetate), 1.38 (app t, J = 6.6 Hz, 12H, isopropyls), 0.91 (d, J = 15.6 Hz, 18 H, *tert*-butyl groups) 0.24 (s, 3H, CH₃ from silyls), 0.13 (s, 3H, CH₃ from silyls), 0.06 (s, 3H, CH₃ from silyls), 0.05 (s, 3H, CH₃ from silyls). ¹³C NMR (150 MHz, CDCl₃): δ 170.3, 162.7, 155.1, 144.6, 143.7, 130.7, 96.8, 93.0, 80.4, 75.4, 74.4, 73.1, 73.0, 53.9, 26.0 (6), 25.2, 24.33, 24.29, 24.02, 23.97, 18.21, 18.18, -4.1, -4.2, -4.7, -4.9. HRMS (ESI+) *m/z* calcd for C₃₁H₅₉N₃O₁₀PSSi₂ (M + H)⁺ is 752.3197, found (M + H)⁺ 752.3190.

Diisopropyl (2-((*2R*, *3R*, *4S*, *5R*)-5-(4-amino-2-oxo-5,6-dihydro-2*H*-pyrimidin-1yl)-3,4-bis-(*tert*-butyl-dimethyl-silyloxy)-tetrahydrofuran-2-yl)ethylsulfonyl) methylphosphonate (9). To a solution of compound **8** (33 mg, 0.04 mmol) in THF:MeOH (1:1, 0.8 mL) was added 10% Pd/C (15 mg). Hydrogen gas was introduced via a balloon to the reaction vessel. The reaction was stirred for 1 h at 1 atm under a hydrogen atmosphere. Afterward, the reaction mixture was filtered through celite and washed with EtOAc (3 X 2 mL). The contents were then concentrated in vacuo to give an oil product **9** (26 mg) in 84 % yield. $[\alpha]_{D}^{23}$ = 3.0° (c. 0.13, EtOAc). ¹H NMR (600 MHz, CDCl₃): δ 7.56 (s, 1H, NH), 5.56 (d, *J* = 4.8 Hz, 1H, H-1'), 4.84-4.78 (m, 2H, CH of isopropyls), 4.27 (app t, *J* = 4.8 Hz, 1H, H-2'), 3.90 (dt, *J* = 10.8, 3.6 Hz, 1H, H-4'), 3.82 (app t, *J* = 4.2 Hz, 1H, H-3'), 3.65-3.46 (m, 4H, PCH₂S and H-6'), 3.41-3.37 (m, 2H, H-6), 2.69-2.65 (m, 2H, H-5), 2.19-2.15 (m, 1H, H-5'), 2.01-1.96 (m, 1H, H-5'), 1.37 (app t, *J* = 4.8 Hz, 12H, isopropyls), 0.9 (d, *J* = 11.4 Hz, 18H, *tert*-butyls), 0.09 (s, 6H, methyls of silyls), 0.07 (s, 6H, methyls of silyls). ¹³C NMR (150 MHz, CDCl₃): δ 169.5, 152.4, 91.5, 81.0, 75.8, 73.14, 73.09, 73.05, 73.00, 72.91, 72.87, 72.7, 39.3, 31.3, 26.0, 25.8, 24.3, 24.24, 24.23, 23.93, 23.91, 23.90, 23.89, 18.18, 18.12, -4.2, -4.3, -4.5, -4.5. HRMS (ESI+) *m/z* calcd for C₂₉H₆₂N₃O₉PS₂Si₂ (M + 2H)⁺ is 715.3483, found (M + 2H)⁺ 715.3242.

Diisopropyl-(*E*)-2-((*2R*, *3S*, *4S*, *5R*)-5-(4-amino-2-oxo-2*H*-pyrimidin-1-yl)-3,4dihydroxy-tetrahydrofuran-2-yl)vinylsulfonyl)methylphosphonate (10). To a stirred solution of compound **8** (41 mg, 0.05 mmol) in dry THF (300 uL) was added TBAF (1 M in THF, 125 uL) and glacial acetic acid (10 uL, 0.16 mmol). The solution was stirred for 1 h at room temperature. The solution was then concentrated in vacuo. After flash-silica chromatography (5% MeOH: 95% CH_2Cl_2), an amorphous solid (34 mg) was obtained. To a stirred solution of the

amorphous solid (34 mg, 0.06 mmol) in CH₂Cl₂, TFA (25 uL, 0.32 mmol) and triethylsilane (10 uL, 0.06 mmol) were added at 0 °C. The reaction was then warmed to room temperature and stirred for overnight. The reaction was then concentrated in vacuo and after flash-silica chromatography (5% MeOH: 95% CH₂Cl₂ to 10% MeOH: 90% CH₂Cl₂), an amorphous solid, compound **10** (23 mg), was obtained in 72% yield. $[\alpha]_{D}^{24} = +70.0^{\circ}$ (c. 0.18, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.64 (d, J = 7.8 Hz, 1H, H-6), 7.10 (dd, J = 15.6, 4.2 Hz, 1H, H-6'), 7.00 (dd, J = 15, 1.2 Hz, 1H, H-5'), 5.94 (d, J = 7.8 Hz, 1H, H-5), 5.88 (d, J = 3Hz, 1H. H-1'). 4.81-4.77 (m. 2H. CH of isopropyls). 4.63-4.61 (app m. 1H. H-4'). 4.22 (dd, J = 4.8, 3Hz, 1H, H-2'), 4.11 (dd, J = 6.6, 5.4 Hz, 1H, H-3'), 4.04 (d, J = 17.4)Hz, 2H, PCH₂S), 1.36 (d, J = 7.8 Hz, 12H, isopropyls). NH₂ and 2 hydroxyls were exchanged with deuterium. ¹³C NMR (150 MHz, CD₃OD): δ 167.7, 158.1, 145.5, 143.2, 131.5, 106.2, 96.5, 94.0, 82.1, 75.1, 74.5, 74.33, 74.29, 24.4, 24.3, 24.09, 24.05. HRMS (ESI+) m/z calcd for $C_{17}H_{29}N_3O_9PS$ (M + H)⁺ is 482.1362, found (M + H)⁺ 482.1347.

Diisopropyl-(2-((*2R*,*3S*,*4S*,*5R***)-5-(4-amino-2-oxo-2***H***-pyrimidin-1-yl)-3,4-dihy droxy-tetrahydrofuran-2-yl)ethylsulfonyl)methylphosphonate (11). To a stirred solution of compound 10** (18 mg, 0.04 mmol) in dry THF and MeOH (1:1,

1 mL) was added 10% Pd/C (10 mg). Hydrogen gas in a balloon was introduced to the reaction vessel. The solution was stirred for 2 h at room temperature at 1 atm under a hydrogen atmosphere. The solution was then filtered through celite and washed three times with MeOH (3 X 3 mL). Flash-silica chromatography (5% MeOH: 95% CH₂Cl₂ to 10% MeOH: 90% CH₂Cl₂) to obtain an amorphous solid, **11** (12 mg), in 67 % yield. $[\alpha]_{D}^{24} = +39.3^{\circ}$ (c. 0.21, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.61 (d, J = 7.2 Hz, 1H, H-6), 5.90 (d, J = 7.8 Hz, 1H, H-5), 5.74 (d, J = 3Hz, 1H, H-1'), 4.81-4.76 (m, 2H, CH of isopropyls), 4.16 (dd, J = 5.4, 3 Hz. 1H. H-2'). 3.99-3.91 (app m. 1H. H-4'). 3.92 (dd. J = 6.6. 6 Hz. 1H. H-3'). 3.58-3.53 (m, 1H, H-6'), 3.47-3.42 (m, 1H, H-6'), 2.32-2.27 (m, 1H, H-5'), 2.18-2.13 (m, 1H, H-5'), 1.34 (d, J = 6.6 Hz, 12H, isopropyls). NH₂, PCH₂S and 2 hydroxyls were exchanged with deuterium. ¹³C NMR (150 MHz, CD₃OD): δ 167.7, 158.3, 143.2, 96.3, 93.8, 82.4, 75.5, 74.6, 74.4, 74.36, 74.33, 52.6, 26.4, 24.37, 24.36, 24.06, 24.02. HRMS (ESI+) m/z calcd for C₁₇H₃₁N₃O₉PS (M + H)⁺ is 484.1519, found (M + H)⁺ 484.1506.

(2-((2*R*,3*S*,4*S*,5*R*)-5-(4-amino-2-oxo-2H-pyrimidin-1-yl)-3,4-dihydroxy-tetra hydrofuran-2-yl)-ethylsulfonyl)methylphosphonic acid (12). Compound 11 (10 mg, 0.02 mmol) was dissolved in CH₂Cl₂ (0.2 mL) and TMSBr (390 uL, 2.6 mmol) was added at 0 °C via a syringe. The reaction was warmed to room temperature and stirred for 36 h after which the reaction was concentrated in vacuo. MeOH (1 mL) was added, stirring was continued for 40 min, and then the reaction was concentrated in vacuo. The residue was co-evaporated with MeOH (3 X 1 mL) three more times. The mixture was then subjected to RP HPLC (water:methanol) to give compound **12** (7 mg, 84%). $[\alpha]_D^{31}$ = + 2.3° (*c*. 0.3, MeOH). ¹H (600 MHz, CD₃OD): δ 7.71 (d, *J* = 7.8 Hz, 1H, H-6), 6.06 (d, *J* = 7.8 Hz, 1H, H-5'), 5.64 (d, *J* = 4.2 Hz, 1H, H-1'), 4.39 (dd, *J* = 5.4, 4.2 Hz, 1H, H-2'), 4.17-4.14 (m, 1H, H-4'), 4.07 (app t, *J* = 6 Hz, 1H, H-3'), 3.69 (d, *J* = 15.5 Hz, 2H, PCH₂S), 3.56-3.50 (m, 2 H, H-6'), 2.35-2.30 (m, 1H, H-5'), 2.24-2.19 (m, 1H, H-5'). NH₂ and 2 hydroxyls were exchanged with deuterium. ¹³C NMR (150 MHz, D₂O): δ 159.5, 148.6, 144.6, 95.2, 91.5, 81.8, 73.6, 72.7, 51.4 (d, *J*= 120.8 Hz), 50.5, 25.1. HRMS (ESI+) *m*/*z* calcd for C₁₁H₁₉N₃O₉PS (M + H)⁺ is 400.0580, found (M + H)⁺ 400.0602.

(*3aR,4S,6R,6aS*)-6-(3-(4-methoxybenzyl)-3,4-dihydro-2,4-dioxopyrimidin-1(2H)-yl)-tetrahydro-2,2-dimethylfuro[3,4-d][1,3]dioxole-4-carbaldehyde (14). To a stirred solution of Dess-Martin periodinane (1.76 g, 4.17 mmol) in dry

dichloromethane (7 mL), a solution of compound **13**⁴ (844 mg, 2.08 mmol) in dry dichloromethane (5 mL) was added dropwise over 5 min. at room temperature under argon. TLC monitoring showed no more starting material after 3 h. The solvent was removed under vacuum. The residue was taken up in ethyl acetate (50 mL), washed with 5% Na₂SO₃ solution (30 mL), saturated aqueous NaHCO₃ followed by water (30 mL), and brine (15 mL) and dried over Na₂SO₄ to obtain crude yellow oil. The product was placed on a flash silica gel column and eluted, respectively, with 1:1, 3:2, and 4:1 ethyl acetate-hexanes, to afford 80% of the aldehyde **14**. $[\alpha]_D^{24} = -14.3^{\circ}$ (c. 0.07, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 9.24 (s, 1H, H-5' aldehyde peak), 7.37 (d, J = 8.6 Hz, 2H, phenyl), 7.16 (d, J = 8.0 Hz, 1H, H-6), 6.83 (d, J = 8.6 Hz, 2H, phenyl), 5.78 (d, J = 8.0 Hz, 1H, H-5), 5.44 (s, 1H, H-1'), 5.26 (d, J = 6.0 Hz, 1H, H-4'), 5.08 (d, J = 12.0 Hz, 1H, H-3'), 5.03 (d, J = 12.0 Hz, 1H, NCH), 4.88 (d, J = 12.0 Hz, 1H, NCH), 4.53 (s, 1H, H-2'), 3.78 (s, 3H, OCH₃), 1.53 (s, 3H, isopropylidene), 1.37 (s, 3H, isopropylidene). ¹³C NMR (150 MHz, CDCl₃): δ 199.6, 162.4, 159.5, 151.3, 141.8, 136.3, 131.6, 131.2, 129.5, 128.5, 113.9, 102.8, 101.3, 94.4, 85.2, 84.4, 55.5, 43.7, 26.6, 25.0. HRMS (MALDI) m/z calcd for C₂₀H₂₂N₂O₇ [M + H]⁺ is 403.1505, found [M + H]⁺ 403.1449.

Diisopropyl-(E)-2-(3aR,4R,6R,6aS)-6-(3-(4-methoxybenzyl)-2,4-dioxo-3,4-di hydro-2H-pyrimidin-1-yl)-2,2-dimethyl-tetrahydro-furo[3,4-d][1,3]dioxol-4-yl) vinylsulfonyl)methylsulfonyl)methylphosphonate (15). To a stirred solution of disulfone reagent 2^1 (357 mg, 0.71 mmol), N.N-diisopropylethylamine (148.5) μ L, 0.85 mmol), and lithium bromide (0.85 mmol) in dry THF (15 mL) was added dropwise under argon compound 14 (114.6 mg, 0.28 mmol) in dry THF and stirred for 2.5 h at r. t. The reaction mixture was acidified with diluted (1:1) acetic acid, extracted with ethyl acetate, washed with water, dried over sodium sulfate, and chromatographed on silica-gel (hexane-ethyl acetate 2:8) to afford 64% of the main product **15**. $[\alpha]_D^{24} = + 24.5^{\circ}$ (c. 0.51, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 7.40 (d, J = 9.0 Hz, 2H, phenyl), 7.13 (dd, J = 15.6, 4.2 Hz, 1H, H-6'), 7.10 (d, J = 7.8 Hz, 1H, H-6), 6.84 (d, J = 9.0 Hz, 2 H, phenyl), 6.79 (dd, J =15.6, 1.8 Hz, 1H, H-5'), 5.78 (d, J = 7.8 Hz, 1H, H-5), 5.55 (s, 1H, H-1'), 5.11-4.77 (m, 9H, NCH₂, SCH₂S, H-2', H-3', H-4', CH of isopropyls), 4.04-3.85 (m, 2H, PCH₂S), 3.77 (s, 3H, OCH₃), 1.55 (s, 3H, isopropylidene), 1.34-1.37 (m, 15H, isopropyls and isopropylidenes). ¹³C NMR (150 MHz, CDCl₃): δ 162.5, 159.4, 150.9, 147.7, 141.0, 130.9, 128.8, 128.7, 114.9, 114.1, 103.0, 97.6, 86.9, 84.8, 84.3, 77.6, 73.62, 73.58, 73.53, 70.5, 55.5, 51.9, 43.9, 27.3, 25.5, 24.39, 24.37, 23.97, 23.92. HRMS (MALDI) m/z calcd for $C_{29}H_{41}N_2O_{13}PS_2$ [M + Na]⁺ is 743.1685, found [M + Na]⁺ 743.1905.

Diisopropyl ((E)-2-((3aS,4R,6R,6aS)-6-(3-(4-methoxybenzyl)-2,4-dioxo-3,4dihydro-2H-pyrimidin-1-yl)-2,2-dimethyl-tetrahydro-furo[3,4-d][1,3]dioxol-4yl)-vinylsulfonyl)methylphosphonate (16). To a stirred solution of monosulfone reagent 3^3 (280.4 mg, 0.56 mmol), *N*,*N*-diisopropylethylamine (98 μ L, 0.57 mmol), and lithium bromide (0.57 mmol) in dry THF (5 mL) was added dropwise under argon compound 14 (73 mg, 0.19 mmol) in dry THF and stirred for 6 h at r. t. The reaction mixture was acidified with diluted 2 mL (1:1) acetic acid and water, extracted with ethyl acetate, washed with water, dried over sodium sulfate, and chromatographed on silica-gel (hexane-ethyl acetate 2:8) to afford 67% of the main product **16**. $[\alpha]_{D}^{24} = + 21.7^{\circ}$ (c. 0.06, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃): δ 7.43 (d, J = 9.0 Hz, 2H, phenyl), 7.16 (d, J = 8.4 Hz, 1H, H-6), 7.06 (dd, J = 15.6, 5.4 Hz, 1H, H-6'), 6.88 (dd, J = 15.6, 1.8 Hz, 1H, H-5'), 6.84 (d, J = 9.0 Hz, 2H, phenyl), 5.77 (d, J = 7.8 Hz, 1H, H-5), 5.65 (d, J = 1.8 Hz, 1H, H-1'), 5.05-4.73 (m, 7H, NCH₂, H-2', H-3', CH of isopropyls, H-4'), 3.76 (s, 3H, OCH₃), 3.52 (dd, J = 16.2, 4.2 Hz, 2H, PCH₂S), 1.55 (s, 3H, isopropylidene), 1.32-1.36 (m, 15H, isopropyls and isopropylidenes). ¹³C NMR (150 MHz, CDCl₃): δ 162.5, 159.4, 150.8, 144.5, 140.7, 131.1, 130.6, 128.8, 115.1, 114.1, 102.9, 96.4, 86.3, 84.8, 84.2, 73.16, 73.14, 73.09, 55.5, 54.2, 53.3, 43.9, 27.3, 25.6, 24.33, 24.30, 23.99, 23.98. HRMS (MALDI) *m/z* calcd for $C_{28}H_{39}N_2O_{11}PS$ [M + Na]⁺ is 665.1910, found [M + Na]⁺ 665.2191.

Disopropyl-((*E***)-2-((***2R*, *3S*, *4S*, *5R***)-5-(2**, 4-dioxo-3, 4-dihydro-2H-pyrimidin-1-yl) -3, 4-dihydroxy-tetrahydro-furan-2-yl)vinylsulfonyl)methylsulfonyl)methyl phosphonate (17). To a solution of 15 (474 mg, 0.64 mmol) in 46.9 mL of acetonitrile was added ceric ammonium nitrate (1.74 g, 3.17 mmol) in 4.69 mL of water, and the mixture was heated to reflux for 30 min., evaporated the solvent and then diluted with water, and extracted with ethyl acetate (3 X 5 mL). Flash chromatography over silica gel (ethyl acetate:MeOH:water = 6:0.5:0.5) afforded 17 in 65% yield. The residue was purified on reverse phase HPLC using methanol and water. $[\alpha]_D^{24}$ = + 47.1° (*c*. 0.03, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.59 (d, *J* = 8.4 Hz, 1H, 6-H), 7.17 (dd, *J* = 15.6, 5.4 Hz, 1H, H-6'), 6.95 (dd, *J* = 15.6, 1.8 Hz, 1H, H-5'), 5.90 (d, *J* = 1.7 Hz, 1H, H-1'), 5.73 (d, *J* = 8.4 Hz, 1H, H-5), 4.80 (m, 2H, CH of isopropyl), 4.65 (m, 1H, H-2'), 4.23 (m, 1H, H-4'), 4.15 (m, 1H, H-3'), 1.36 (d, *J* = 5.4 Hz, 12H, isopropyls). Hydrogens between P and S (PCH₂S) and S and S (SCH₂S) were exchanged with deuterium and not observed. ¹³C NMR (150 MHz, CD₃OD): δ 164.8, 151.0, 147.1, 141.6, 128.4, 102.2, 91.2, 81.5, 73.66, 73.64, 73.18, 73.07, 70.5, 50.2 (d), 23.18, 23.15, 22.84, 22.81. HRMS (MALDI) *m/z* calcd for C₁₈H₂₉N₂O₁₂PS₂ [M + H]⁺ is 561.0978, found [M + H]⁺ 561.0966.

Diisopropyl ((*E*)-2-((*2R*, *3R*, *4S*, *5R*)-5-(2, 4-dioxo-3, 4-dihydro-2H-pyrimidin-1yl)-3, 4-dihydroxy-tetrahydrofuran-2-yl]-vinylsulfonyl)methylphosphonate (18). To a solution of 16 (145 mg, 0.23 mmol) in 13 mL of acetonitrile was added ceric ammonium nitrate (652 mg, 1.19 mmol) in 1.3 mL of water, and the mixture was heated to reflux for 30 min. The solvent was then evaporated; the residue was diluted with water, and extracted with ethyl acetate (3X5 mL). Flash chromatography over silica gel (ethyl acetate:MeOH:water = 6:0.5:0.5) afforded

was unded with water, and extracted with early acetate (5x3 mL). This in chromatography over silica gel (ethyl acetate:MeOH:water = 6:0.5:0.5) afforded **18** in 72% yield. The residue was purified on reverse phase HPLC using methanol and water. $[\alpha]_D^{24} = + 20.0^\circ$ (*c*. 0.03, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.64 (d, *J* = 8.4 Hz, 1H, H-6), 7.05 (dd, *J* = 15.6, 5.4 Hz, 1H, H-6'), 6.95 (dd, *J* = 15.6, 1.8 Hz, 1H, H-5'), 5.86 (d, *J* = 1.7 Hz, 1H, H-1'), 5.73 (d, *J* = 8.4 Hz, 1H, H-5), 4.79 (m, 2H, CH of isopropyl), 4.58 (m, 1H, H-4'), 4.28 (m, 1H, H-2'), 4.14 (m, 1H, H-3'), 4.01 (d, *J* = 16.8 Hz, 2H, SCH₂P), 1.34-1.36 (d, *J* = 6.0 Hz, 12H, isopropyls). ¹³C NMR (150 MHz, CD₃OD): δ 164.8, 150.9, 144.1, 142.0, 130.3, 102.0, 91.7, 81.3, 73.24, 73.15, 73.12, 73.07, 23.17, 23.15, 22.89, 22.88. A carbon between P and S is not observed due to exchanged with deuterium. HRMS (MALDI) m/z calcd for C₁₇H₂₇N₂O₁₀PS [M + H]⁺ is 483.1202, found [M + H]⁺: 483.1213.

(*E*)-2-((2*R*,3*S*,4*S*,5*R*)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-3,4-dihy droxy-tetrahydrofuran-2-yl)vinylsulfonyl)methylsulfonyl)methyl phosphonic acid (19). To a stirred solution of 17 (33 mg) in dichloromethane was added TMSBr (0.11 mL) drop wise at 0 °C under argon. The reaction mixture was stirred overnight at room temperature, and then it was evaporated. Working up with methanol gave compound 19 in quantitative yields. The residue was purified on reverse phase HPLC using methanol and water to give 76% of the desired product 19. $[\alpha]_D^{24}$ = + 47.0° (*c*. 0.03, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.60 (d, *J* = 8.4 Hz, 1H, H-6), 7.16 (dd, *J* = 15.6, 5.4 Hz, 1H, H-6'), 6.95 (dd, *J* = 15.6, 1.8 Hz, 1H, H-5'), 5.94 (d, *J* = 1.7 Hz, 1H, H-1'), 5.75 (d, *J* = 8.4 Hz, 1H, H-5), 5.37 (s, 2H, SCH₂S), 4.65 (m, 1H, H-4'), 4.23 (t, 1H, H-2'), 4.15 (t, 1H, H-3'), 4.09 (d, *J*= 16.2 Hz, 2H, PCH₂S). ¹³C NMR (150 MHz, CH₃OD): δ 164.9, 151.0, 146.9, 141.6, 128.7, 102.2, 91.2, 81.5, 73.2, 73.0. Carbons between P and S and also carbons between S and S are not observed due to exchanged with deuterium. Low intensity doublet is seen around 50.3 for carbons between P and S. HRMS m/z calcd for $C_{12}H_{17}N_2O_{12}PS_2$ [M + H]⁺ is 477.0039, found [M + H]⁺ 477.0031.

(*E*)-2-((*2R*, *3R*, *4S*, *5R*)-5-(2, 4-dioxo-3, 4-dihydro-2H-pyrimidin-1-yl)-3, 4-dihydro xy-tetrahydrofuran-2-yl)vinylsulfonyl)methylphosphonic acid (20). To a stirred solution of **18** (60 mg) in dichloromethane was added TMSBr (0.23 mL) drop wise at 0 °C under argon. The reaction mixture was stirred overnight at room temperature, and then it was evaporated. Working up with methanol gave compound **20** in quantitative yields. The residue was purified on reverse phase HPLC using methanol and water to give 80% of the desired product. $[\alpha]_D^{24}$ = + 33.3° (*c*. 0.02, MeOH). ¹H NMR (600 MHz, CH₃OD): δ 7.55 (d, *J* = 8.4 Hz, 1H, H-6), 6.98 (dd, *J* = 15.6, 5.4 Hz, 1H, H-6'), 6.88 (dd, *J* = 15.6, 1.8 Hz, 1H, H-5'), 5.81 (d, *J* = 1.7 Hz, 1H, H-1'), 5.66 (d, *J* = 8.4 Hz, 1H, H-5), 4.51 (m, 1H, H-4'), 4.17 (m, 1H, H-2'), 4.05 (m, 1H, H-3'), 3.72 (dd, *J* = 16.2, 3.8 Hz, 2H, SCH₂P). ¹³C NMR (150 MHz, CD₃OD): δ 164.9, 151.0, 144.1, 141.9, 130.2, 102.1, 91.4, 91.2, 81.4, 73.2, 48.7. HRMS *m*/*z* calcd for C₁₁H₁₅N₂O₁₀PS [M + Na]⁺ is 421.0083, found [M + Na]⁺: 421.0093.

Diisopropyl (2-((2R,3R,4S,5R)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-3.4-dihydroxy-tetrahydrofuran-2-yl)ethylsulfonyl)methylphosphonate (21). Compound **18** in abs. ethanol was hydrogenated (pressure 1 atm, 10% Pd/C) at room temperature for 3 h. Then, the catalyst was removed by filteration through celite, solvent evaporated in vacuum. The residue was chromatographed on silica-gel (ethyl acetate:MeOH:H₂O = 6:0.5:0.5) to afford 43% of the main product **21.** It was purified on reverse phase HPLC using methanol and water. ¹H NMR (600 MHz, CH₃OD): δ 7.60 (d, J = 12.0 Hz, 1H, H-6), 5.75 (d, J = 6.0 Hz, 1H, H-1'), 5.70 (d, J = 12.0 Hz, 1H, H-5), 4.78 (m, 2H, CH of isopropyl), 4.24 (m, 1H, H-2'), 3.96 (m, 2H, H-4', H-3'), 3.40-3.54 (m, 2H, H-6'), 2.13-2.29 (m, 2H, H-5'), 1.35 (d, J= 6.0 Hz, 12H, isopropyls). Protons between P and S (PCH2S) were exchanged with deuterium and not observed. ¹³C NMR (150 MHz, CH₃OD): δ 164.9, 151.0, 142.0, 105.0, 101.8, 91.4, 81.7, 73.2 (4-carbons), 48.0, 25.3, 23.2 (2-carbons), 22.9 (2-carbons). HRMS (MALDI) m/z calcd for C₁₇H₂₉N₂O₁₀PS [M + H]⁺ is 485.1359, found [M + H]⁺ 485.1355.

(2-((2*R*,3*R*,4*S*,5*R*)-5-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)ethylsulfonyl)methylphosphonic acid (22). Compound 20 in abs. ethanol was hydrogenated (pressure 1 atm, 10% Pd/C) at room temperature for 3 h. Then, the catalyst was removed by filtration through celite. The contents were then concentrated in vacuo to give an oil product 22 in 65% yield. The residue was purified on reverse phase HPLC using methanol and water. $[\alpha]_D^{24} = + 12.5^{\circ}$ (*c*. 0.04, MeOH). ¹H NMR (600 MHz, CH₃OD): δ 7.51 (d, *J* = 8.4 Hz, 1H, H-6), 5.67 (d, *J* = 1.7 Hz, 1H, H-1'), 5.62 (d, *J* = 8.4 Hz, 1H, H-5), 4.14 (m, 1H, H-2'), 3.88 (m, 1H, H-4'), 4.05 (m, 1H, H-3'), 3.31-3.48 (m, 2H, H-6'), 2.03-2.23 (m, 2H, H-5'). Protons between P and S (PCH2S) were exchanged with deuterium and not observed. ¹³C NMR (150 MHz, CH₃OD): δ 164.1, 151.0, 141.9, 101.8, 91.3, 81.8, 73.55, 73.29, 50.8, 48.37, 25.4. HRMS (MALDI) *m/z* calcd for C₁₁H₁₇N₂O₁₀PS [M + H]⁺ is 401.0419, found [M + H]⁺ 401.0411.

NmCSS Substrate Assay:

The reaction mixtures (20 uL) in Tris-HCI buffer (200 mM, pH 8.5) containing purified *Neisseria meningitidis* CSS recombinant enzyme (0.09 ug),⁵ CTP (1 mM), CDP (1 mM), UDP (1 mM), or UTP (1 mM), and *N*-acetylneuraminic acid

(Neu5Ac, 1 mM) and MgCl₂ (20 mM) were incubated at 37 °C for 30 min and the reactions were stopped by adding 10% SDS on ice to give a final concentration of 1% SDS. The samples were analyzed using a P/ACE[™] MDQ Capillary Electrophoresis System equipped with a UV detector at 200 nm wavelength. The percentage conversion for the formation of CMP-Neu5Ac was calculated based on UV response standard curve of CTP and CMP-Neu5Ac obtained using mixtures of different ratios of CTP and CMP-Neu5Ac (data not shown). The reaction was also carried out at higher enzyme concentrations (7.5 mg, data not shown).

NmCSS Inhibition Assay:

The reaction mixtures (20 uL) in Tris-HCl buffer (200 mM, pH 8.5) containing purified *Neisseria meningitidis* CSS recombinant enzyme (1.25 ng),⁵ CTP (1 mM), *N*-acetylneuraminic acid (Neu5Ac, 1 mM), MgCl₂ (20 mM), with or without an inhibitor (1 mM) were incubated at 37 °C for 15 min and the reactions were stopped by adding 10% SDS on ice to give a final concentration of 1% SDS. The samples were analyzed using a P/ACE[™] MDQ Capillary Electrophoresis System equipped with a UV detector at 254 nm wavelength. The percentage conversion for the formation of CMP-Neu5Ac was calculated based on UV response standard curve of CTP and CMP-Neu5Ac obtained using mixtures of different ratios of CTP and CMP-Neu5Ac (data not shown).

	Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009	C-13 14.1T 1H dec & NOE
	96.859 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.803 92.829 92.849 49.847 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 49.142 48.717 48.755	JWV248 data collected in ExpNo 11 converted to analog and LPbc Proc 2: more SI points, LB=2
	NH ₂ N N O O O H O H	NAME JWong_082108 EXPNO 21 PROCNO 2 Date_ 20080821 Time 11.42 INSTRUM spect PROBHD 5 mm CPTCI 1H- PULPROG zgdc TD 65400 SOLVENT MeOD NS 30000 DS 4 SWH 33333.322 FIDRES 0.509684 AQ 0.9810500 DW 15.000 DE 30.00 DE 30.00 DE 30.00 DI 1.50000000 Sec TE DI 1.5000000 Sec TD D1 1.5000000 Sec TD D1 0.0300000
		CHANNEL f1 NUC1 13C P1 6.00 usec PL1 -0.40 dB PL1W 105.21154022 W SF01 150.9179000 MHz
170 160 150 140 130 120 110 1	100 90 80 70 60 50 40 30	ppm

1025-3 #3-8 RT: 0.04-0.13 AV: 6 NL: 7.90E6 T: FTMS + c NSI Full ms [200.00-1000.00]

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Std proton

Automation directory:

Pulse Sequence: s2pul

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

49.437 **4**9.294

9.577

48.866 48.723 48.582

19.009

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

1063 #73-94 RT: 1.09-1.41 AV: 22 NL: 2.34E7 T: FTMS + c ESI Full ms [250.00-1000.00]

Supplementary Material (ESI) for Organic & Biomolecular Chemistry JWV 138 This journal is (c) The Royal Society of Chemistry 2009

1080 #1-4 RT: 0.01-0.06 AV: 4 NL: 1.28E8 This journal is (c) The Royal Society of Chemistry 2009 T: FTMS + c ESI Full ms [200.00-1000.00]

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009 JWV 196

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

4700 Reflector Spec #1 MC[BP = 974.1, 57961]

4700 Reflector Spec #1 MC[BP = 974.1, 61111]

.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

CTP at 1 mM

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

UTP at 1 mM

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

CTP at 5 mM

UTP at 5 mM

CDP at 5 mM

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

UDP at 5 mM

CTP at 10 mM

UTP at 10 mM

CDP at 10 mM

Controls With no Inhibitors

AU

AU

AU

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

AU

Reference:

1. M. J. Hadd, M. A. Smith, M. D. Carducci, J. Gervay-Hague *Tetrahedron Lett.* 2001, **42**, 5137.

2. X. Chen, A. J. Wiemer, R. J. Hohl, D. F. Wiemer *J. Org. Chem.* 2002, **67**, 9331.

3. J. H. Wong, M. M. Olmstead, J. C. Fettinger, J. Gervay-Hague Acta Cryst. Sec. E. 2007, 63, 3046.

- 4. S. J. Danishefsky, S. L. DeNinno, S. H. Chen, L. Boisvert, M. Barbachyn J. *Am. Chem. Soc.* 1989, **111**, 5810.
- 5. H. Yu, H. Yu, R. Karpel, X. Chen Bioorg. Med. Chem. 2004, 12, 6427.