High-Resolution and Sensitivity Through-Bond Correlations in Ultra-Fast Magic Angle Spinning (MAS) Solid-State NMR

Ivan Bertini, Lyndon Emsley, Isabella C. Felli, Ségolène Laage, Anne Lesage, Józef R. Lewandowski, Alessandro Marchetti, Roberta Pierattelli and Guido Pintacuda

(a) Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Firenze), Italy;
(b) Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France;
(c) Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.

1. Solid-state NMR Spectroscopy

Alanine spectra:

The spectra of fully 13C-labeled L-Alanine (Figure 1c and d) were recorded on a 500 MHz Bruker Avance III spectrometer, equipped with a double resonance 1.3 mm MAS probe spinning at 60 kHz MAS. Swept low-power (slpTPPM) decoupling was applied during the echo periods and during acquisition (ωp/2π⋅νR/4 = 13.6 kHz according to flip pulse calibration (optimized on echo sequence), 40% pulse duration ramp with reference τp = 33.33 μs, phase difference 41°). The INADEQUATE spectra correspond to 1D experiments recorded, for the CO resonance, after a non-selective CP, and for the Cα resonance after a selective CP on the carbonyls. In all cases the Δ delay was set to 4.5 ms. Gaussian Pulse Cascades (5000 points) of a length of 800 μs for CO and Cα were used.

SOD spectra:

The 2D refocused INADEQUATE and INADEQUATE-S3E spectra were performed on a 850 MHz Bruker Avance III spectrometer using a triple resonance (1H/13C/15N) 1.3 mm MAS probe on a microcrystalline, uniformly labeled [15N, 13C] sample of stabilized human dimeric oxidized Cu(II), Zn(II) superoxide dismutase (Protera srl, Sesto Fiorentino, Italy). The spinning frequency was 60 kHz and the temperature was set to 245 K (corresponding to a sample temperature of about 5 °C as estimated by the shift of the water resonance). For the INADEQUATE-S3E experiment, a total of 320 points were acquired in τ1 (two FIDs corresponding to experiments A and B were recorded for each real τ1 increment), with 256 scans each. The conventional refocused INADEQUATE spectrum was acquired with twice as many scans (512 scans) and 160 τ1 points. In both cases, the maximum acquisition times were 6.8 ms in τ1 and 21 ms in τ2 (interscan delay of 2.4 s). Quadrature detection was obtained with States. Swept low-power slpTPPM decoupling was applied (ωp/2π⋅νR/4 = 13.6 kHz according to flip pulse calibration (optimized on echo sequence), 40% pulse duration ramp with reference τp = 33.33 μs, phase difference 41°). A selective cross-polarization on the CO resonances was used with a linear ramp (100% to 90% of RF field strength) on the H1 channel, with a 1.5 ms contact time and an RF field strength of 72 kHz for H and 64 kHz for 13C. For the conventional refocused INADEQUATE spectrum, the Δ/2 delays of the first and second echo periods were set to 4.5 and 3.5 ms, and a Z-filter delay of 5 ms was appended before acquisition. Refocused coherence lifetimes T2 of 60 ms were measured for the CO resonances. For the INADEQUATE-S3E experiment, Gaussian Pulse Cascades (2000 points) of a length of 450 μs for CO and Cα were used. The delay Δ/2 was set to 4 ms for the first echo period, and Δ/4 was set to 1/8T1CO = 2.25 ms in the refocusing block.

GB1 spectra:

CP and CP-INADEQUATE spectra of Figure 1 were recorded on a 800 MHz Bruker Avance III spectrometer using a triple resonance (1H/13C/15N) 1.3 mm MAS probe on a microcrystalline, uniformly labeled [15N, 13C] sample of the protein domain GB1, (Franks, 2005 #742). For the experiments recorded at 10 kHz MAS, SPINAL-64 heteronuclear decoupling was applied at a RF field strength ωp/2π = 80 kHz. At ultra-fast MAS (60 kHz MAS), low-power slpTPPM decoupling was applied (ωp/2π⋅νR/4 = 13.6 kHz according to flip pulse calibration (optimized on echo sequence), 40% pulse duration ramp with reference τp = 33.33 μs, phase difference 41°). The 2D refocused INADEQUATE-S3E spectrum of Figure 3 was performed on the 1000 MHz Bruker Avance III spectrometer using a triple resonance (1H/13C/15N) 1.3 mm MAS probe. The spinning frequency was 60 kHz and the temperature was set to 245 K (corresponding to a sample temperature of about 20 °C as estimated by the shift of the water resonance). A total of 2048 points were acquired in τ1 (two FIDs for each real τ1 increment), with 8 scans each. The maximum acquisition times were 37 ms in t1 and 50 ms in t2 for a total experimental time of 9 hours (interscan delay of 2 s). Quadrature detection was obtained with States. Low-power slpTPPM decoupling was applied (ωp/2π⋅νR/4 = 13.6 kHz according to flip pulse calibration (optimized on echo sequence), 40% pulse duration ramp with reference τp = 33.33 μs, phase difference 41°). A selective cross-polarization on the CO resonances was used with a linear ramp (100% to 90% of RF field strength) on the H1 channel, with a 1.5 ms contact time and an RF field strength of...
47 kHz for 1H and 19 kHz for 13C. Gaussian Pulse Cascades (4000 points) of a length of 500 μs for CO and C$_\alpha$ were used. The delay $\Delta/2$ was set to 4 ms for the first echo period and $\Delta/4$ was set to $1/8J_{CO-C} = 2.25$ ms for the S^E block.

Spectra of N,N-bis(diphenylphosphino)-N-((S)-α-methylbenzyl)amine

The sample was provided by the Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité (Grenoble, France). All NMR spectra were recorded on a Bruker Avance III spectrometer operating at 1H and 31P resonance frequencies of 500.1 and 202.5 MHz, respectively.

The phosphorus-31 spectra of Figure S3(a) and (b) were recorded using a double resonance 2.5 mm probe as previously described in reference. (spinning frequency of 20 kHz and TPPM-1H decoupling at $\omega_{1H}/2\pi = 140$ kHz). The 1D 31P CPMAS spectrum displays five broad resonances, which actually correspond to eight chemically distinct phosphorus sites arising from four inequivalent molecules per unit cell in the crystal structure. In agreement with previous studies, the eight different sites were labeled x and x', with x ranging from 1 to 4. The refocused 31P INADEQUATE spectrum displays correlations between the four pairs of bonded phosphorous-31. Spectra of Figure S3(c) - (f) were recorded using a double resonance 1.3 mm probe at a spinning frequency of 60 kHz, under low-power slpTPPM1 decoupling ($\omega_{1H}/2\pi-\omega_\nu/4=13.6$ kHz according to flip pulse calibration (optimized on echo sequence), 40% pulse duration ramp with reference $\tau_p = 33.33$ μs, phase difference 41°). A 31P refocused coherence lifetime of 110 ms (corresponding to a refocused linewidth of 2.9 Hz) was measured for the 3a resonance. Cross polarization was achieved using a linear ramp on the 1H channel, with a 2 ms contact time and a RF field strength of 100 kHz for 1H and 54 kHz for 31P.

For the INADEQUATE-S^E experiment, selective refocusing of sites 3a and 3b was achieved using Gaussian Cascades2 Q3 pulses (5000 points) of 2200 μs. A total of 56 t$_1$ points (two FIDs for each t$_1$ increment) were recorded with 5120 scans each. For the conventional refocused INADEQUATE spectrum, a Z-filter delay of 5 ms was appended before acquisition. A total of 28 t$_1$ points with 2560 scans were recorded. In both cases, the maximum acquisition times were 11.6 ms in t$_1$ and 30 ms in t$_2$ (interscan delay of 1 s) and the delay Δ was set to $1/2J_{PP} = 19.2$ ms (corresponding to a J coupling constant of 25.9 Hz as measured in reference).8 Quadrature detection was obtained with States.5

2. NMR data treatment

For the INADEQUATE-S^E experiments, two FIDs (corresponding to the blocks A and B depicted in Figure 2(a)) were recorded for each t$_1$ increment, stored separately and used to reconstruct two distinct sets of two-dimensional maps. The resulting 2D spectra were subsequently summed and subtracted to separate for each peak the two multiplet components α and β. After applying a 90° phase correction on one of them, the resulting two spectra were shifted to the center of the original doublet (by $\pm J_{CO-C}/2 = \pm 26.5$ Hz in the case of the CO-C$_\alpha$ coupling) and summed to obtain J-decoupled correlations. For a fair comparison in terms of signal to noise ratio between the two types of INADEQUATE experiments, the INADEQUATE-S^E spectra were divided by $\sqrt{2}$ (to account for the fact that the spectra are summed twice) when compared with conventional INADEQUATE spectra.

3. SOD INADEQUATE-S^E spectra

Figure S1: Two-dimensional INADEQUATE-S^E spectrum recorded on a microcrystalline, uniformly labeled [15N, 13C] sample of SOD. (a) and (b) correspond respectively to the carbonyl and aliphatic regions of the spectrum.
4. Scalar versus dipolar correlation spectra

Figure S2: CO-Cα regions of two-dimensional carbon-carbon correlation spectra on microcrystalline, oxidized fully 13C,15N-CuII,ZnII SOD at 850 MHz. Sheared INADEQUATE spectra obtained with 3E (a) and conventional (b) refocusing period, recorded respectively on a 1.3 mm rotor at 60 kHz MAS, and on a 3.2 mm rotor at 20 kHz MAS. PDSD spectra (20 ms mixing time) obtained with (c) and without (d) 3E virtual decoupling. The spinning frequency was 10 kHz.
5. INADEQUATE-S3E spectra of N,N-bis(diphenylphosphino)-N-((S)-\(\alpha\)-methylbenzyl)amine

![Figure S3: (a) \(^{31}\text{P}-^{1}\text{H} \) CPMAS and (b) DQ refocused INADEQUATE spectra of N,N-bis(diphenylphosphino)-N-((S)-\(\alpha\)-methylbenzyl)amine recorded at 11.7 T and at a MAS frequency of 20 kHz, under TPPM-15 \(^{1}\text{H} \) decoupling at 140 kHz. (c) / (f) Comparisons between INADEQUATE spectra acquired using the conventional refocusing period (red) and the S3E block (black) and a MAS frequency of 60 kHz.](image-url)
6. INADEQUATE-S2E and refocused INADEQUATE pulse schemes and phase cycles

Figure S4: Pulse schemes for the INADEQUATE-S3E (a) and refocused INADEQUATE (b). Phase cycles are: (a) ϕ_1=[y,-y]; ϕ_2=[y,-y,-y,-y]; ϕ_4=[x,y,y,x,x,x,x]; ϕ_5=[x,x,y,x,y,x,y,y,x]; ϕ_7=[x]; ϕ_10=[x]; ϕ_{12}=[y]*16, [-y]*16; ϕ_{13}=[x]*16, [-x]*16; ϕ_{31}=[x,-x,-x,x]*4, [-x,x,x,-x]*4; (b) ϕ_1=[y,-y]; ϕ_2=[y,y,-x,-x,-y,-y,x,x]; ϕ_4=[x,x,y,y,-x,-x,-y,-y,-x,-x,-y,-y,x,x,y,y]; ϕ_5=[x,x,y,y,x,x,x,x]; ϕ_6=[x]; ϕ_7=[y]*16, [-y]*16; ϕ_{10}=[x]; ϕ_{11}=[x]*32, [-y]*32; ϕ_{31}=[x,x,x,x,x,x,x]*4, [-y,y,y,y,y,y,y]*4.

7. References