QCM impedance components R_f and XL_f for 6 injections of 50 µL of KCl 0.3M showing excellent repeatability. Inset: parametric plot of R_f vs. XL_f, [KCl] is the parameter and increases clockwise. Note that all the injections lay on the same parametric curve, showing a strong hysteresis.
Variation of R_f and XL_f for injections of NaCl solutions buffered at different pH. The solutions were injected directly in the flow system. The gold electrode was previously derivatized with aminoethanethiol. a) pH=6.4, b) pH=5.0, c) pH=6.1, d) pH=9.2, e) pH=3.7, f) pH=6.4. pH was measured close to the QCM cell. Note that the XL$_f$ variation (open circle diameter) is greater for higher pH.
QCM impedance components
R_f and X_{L_f} vs. BaCl$_2$ concentration.
Inset: parametric plot of R_f vs. X_{L_f}.
[BaCl$_2$] is the parameter and increases clockwise.
QCM impedance components R_f and X_L_f vs. CaCl_2 concentration.

Inset: parametric plot of R_f vs. X_L_f, $[\text{CaCl}_2]$ is the parameter and increases clockwise.
QCM impedance components
R_{f} and $X_{L_{f}}$ vs. AlCl_3 concentration.
Inset: parametric plot of R_{f} vs. $X_{L_{f}}$, $[\text{AlCl}_3]$ is the parameter and increases clockwise.
QCM impedance components
R_f and XL_f vs. ZnSO_4 concentration.
Inset: parametric plot of R_f vs. XL_f,
$[\text{ZnSO}_4]$ is the parameter and increases clockwise.