Electronic Supplementary Information

Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing

Eungjeong Kim, Sungmin Seo, Moo Lyong Seo and Jong Hwa Jung *

Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, S. Korea. Fax No.: +82-55-758-6027; E-mail: jonghwa@gnu.ac.kr

Table of Contents:

Title and table of contents ... S1
Fig. S1 TEM image of mesoporous silica .. S2
Fig. S2 Barrett-Joyner-Halenda(BJH) pore diameters of
(a) mesoporous silica and (b) AR-SiO2 ... S3
Fig. S3 Thermogravimetric analysis data of AR-SiO2 S4
Fig. S4 FT-IR spectra of (a) mesoporous silica (SBA-15), and (b) AR-SiO2 S5
Fig. S5 FT-IR spectra of (a) TiO2 nanoparticle, and (b) AR-TiO2 S6
Fig. S6 The colorimetric response of H2O suspension samples of AR-SiO2 (5.0 mg)
in the (a) absence and the presence of (b) KCl, (c) CaCl2 and (d) SrCl2 S7
Fig. S7 UV-vis spectrum of AR-SiO2 (5.0 mg) with HgCl2 (5.0 equiv) in the presence of
K+, Ca2+, Sr2+, Co2+, Cd2+, Pb2+, Fe3+, Cu2+ and Zn2+ ions
(10 equiv) at pH=7.4. .. S8
Fig. S8 Color changes of AR-SiO2 (5.0 mg) in the (a) absence and
the presence of (b) HgBr2, (c) Hg(NO3)2, and (d) Hg(ClO4)2 S9
Fig. S9 Proposed structure for receptor 1 complex attached on AR-SiO2 with Hg2+ ion ... S10
Fig. S10 Job’s plot for AR-SiO2 with Hg2+ ... S11
Fig. S11 Calibration curve of concentration of Hg2+ ion against
absorption intensity of AR-SiO2 (at 510 nm) S12
Fig. S12 UV-vis spectrum of AR-SiO2 (5.0 mg) in waste containing
Hg2+ ion (2.0 µM) at pH=7.4. ... S13
Fig. S13 (a) UV-vis spectra of AR-SiO2 at different pH values and
(b) plot of pH values against absorption intensity of AR-SiO2 S14
Fig. S14 Image of AR-TiO2 films in the (a) absence and (b) the presence of HgCl2 S15
Fig. S15 Calibration curve of concentration of Hg2+ ion against
absorption intensity of AR-TiO2 films (at 492 nm) S16
Fig. S1 TEM image of mesoporous silica.
Fig. S2 Barrett-Joyner-Halenda (BJH) pore diameters of (a) mesoporous silica and (b) AR-SiO$_2$.
Fig. S3 Thermogravimetric analysis data of AR-SiO$_2$.
Fig. S4 FT-IR spectra of (a) mesoporous silica (SBA-15) and (b) AR-SiO$_2$.
Fig. S5 FT-IR spectra of (a) TiO$_2$ nanoparticle and (b) AR-TiO$_2$.
Fig. S6 The colorimetric response of H$_2$O suspension samples of AR-SiO$_2$ (5.0 mg) in the (a) absence and the presence of (b) KCl (5.0 equiv), (c) CaCl$_2$ (5.0 equiv) and (d) SrCl$_2$ (5.0 equiv).
Fig. S7 UV-vis spectrum of AR-SiO₂ (5.0 mg) with HgCl₂ (5.0 equiv) in the presence of K⁺, Ca²⁺, Sr²⁺, Co²⁺, Cd²⁺, Pb²⁺, Fe³⁺, Cu²⁺ and Zn²⁺ ions (10 equiv) at pH=7.4.
Fig. S8 Color changes of AR-SiO$_2$ (5.0 mg) in the (a) absence and the presence of (b) HgBr$_2$ (5.0 equiv), (c) Hg(NO$_3$)$_2$ (5.0 equiv) and (d) Hg(ClO$_4$)$_2$ (5.0 equiv).
Fig. S9 Proposed structure for receptor 1 complex attached on AR-SiO$_2$ with Hg$^{2+}$ ion.
Supplementary Material (ESI) for Analyst
This journal is (C) The Royal Society of Chemistry 2010

Fig. S10 Job’s plot for AR-SiO$_2$ with Hg$^{2+}$.
Fig. S11 Calibration curve of concentration of Hg\(^{2+}\) ion against absorption intensity of AR-SiO\(_2\) (at 510 nm).
Fig. S12 UV-vis spectrum of AR-SiO$_2$ (5.0 mg) in waste containing Hg$^{2+}$ ion (2.0 µM) at pH=7.4.
Fig. S13 (a) UV-vis spectra of AR-SiO$_2$ at different pH values and (b) plot of pH values against absorption intensity of AR-SiO$_2$.
Fig. S14 Image of AR-TiO$_2$ films in the (a) absence and (b) the presence of HgCl$_2$.
Fig. S15 Calibration curve of concentration of Hg$^{2+}$ ion against absorption intensity of AR-TiO$_2$ films (at 492 nm).