Supporting Information

Screening of Agrochemicals in Foodstuffs and Water using Low Temperature Plasma (LTP) Ambient Mass Spectrometry

Joshua S. Wiley, Juan F. García-Reyes1,2, Jason D. Harper1, Nicholas A. Charipar1, Zheng Ouyang1 and R. Graham Cooks1*

1Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN 47907
2Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, 23071 Jaén, Spain

Abstract: Additional information is provided including LTP-MS/MS spectra of agrochemicals in neat solvent as well as in spiked water samples.

*To whom correspondence should be addressed. Professor R. Graham Cooks, Department of Chemistry and Center for Analytical Instrumentation (CAID), Purdue University, 560 Oval Drive, West Lafayette, IN 47907. Telephone: (765) 494-5262. Fax: (765) 494-9421. Email: cooks@purdue.edu
TABLES AND FIGURES SECTION (supporting information)

![Graphs of MS/MS spectra](image)

Fig. S1 Four MS/MS spectra of representative agrochemicals examined in this study. (a) MS/MS spectrum $[M+H]^+$ (m/z 228) of ametryn. (b) MS/MS spectrum $[M+H]^+$ (m/z 216) of atrazine. (c) MS/MS spectrum $[M+H]^+$ (m/z 230) of terbuthylazine. (d) MS/MS spectrum $[M+H]^+$ (m/z 292) of parathion-ethyl.
Fig. S2 Detection of selected herbicides spiked into environmental water samples by LTP-MS/MS. (a) Detection of atrazine (spiking level: 1 µg L⁻¹) in an aqueous solution (MS/MS: m/z 216 → 174); (b) Detection of terbutylazine (spiking level: 10 µg L⁻¹) in aqueous solution (MS/MS: m/z 230 → 174). The LTP-MS experiments were performed using 3 µL of the water sample (without any sample preparation) spotted onto the glass substrate heated at 150 °C, with examination by tandem mass spectrometry.