Supporting Information

Polymerization-assisted signal amplification for electrochemical detection of biomarkers

Yafeng Wua, Songqin Liua,*, and Lin Heb

a State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, P. R. China. Fax: 86-25-52090618.; Tel: 86-25-52090613.; E-mail: liusq@seu.edu.cn

b Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA. Fax: 919-515-8920; Tel: 919-515-2993; E-mail: Lin₂He@ncsu.edu
Figure S1. AGET ATRP mechanism.
Figure S2. The representative SEM image of the substrate Ab2*-Ag-Ab1-Au.
Figure S3. (A) The surface reflectance FT-IR spectrum of the Au surface, a is Ab$_2^*$-Ag-Ab$_1$-Au, b is PGMA-Ab$_2$-Ag-Ab$_1$-Au; (B) X-ray photoelectron spectroscopy analysis. C 1s core-level spectra of the Ab$_2^*$/Ag/Ab$_1$/Au surface subjected to AGET ATRP of GMA for 2 h.
Figure S4. Plots of the the reduction peak currents of FeNH$_2$ against the coupling time of FeNH$_2$ and PGMA, the concentration of PSA is 40 ng mL$^{-1}$, AGET ATRP reaction time is 2 h.