Supplementary Information

Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids

Francine Kivlehan,a François Mavré,a Luc Talini,b Benoît Limoges,*a and Damien Marchal*a

*aLaboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France. E-mails: marchal@univ-paris-diderot.fr, limoges@univ-paris-diderot.fr.
bEasy Life Science, 68, Boulevard de Port-Royal, 75005 Paris Cedex 05, France.

Real-time fluorescent-based PCR

Figure S1 shows the real-time PCR amplification curves for serial dilutions (10-fold) of the 89-bp target DNA sequence of E. Coli. The experimental conditions are described in the Experimental Section. Graph A in Figure S1 corresponds to the baseline corrected relative fluorescence intensity (ΔRn) of EvaGreen® dye versus amplification time, while graph B is the corresponding semi-logarithmic representation. The horizontal dashed line in graph B was used to determine the threshold cycle numbers that were next used to establish the calibration plot in C. A linear dynamic range between \(2 \times 10^3\) to \(5 \times 10^9\) initial target copies was determined from graph C, with a detection limit of \(~10^3\) initial target copies, while a PCR efficiency of 1.8 can be calculated from the slope, which is closed to the theoretical value of 2.
Figure S1. (A, B) EvaGreen®-based Real-time PCR amplification curves of the 89-bp DNA target. The concentration of primers in each reaction solution was 75 nM and the initial number of target DNA copies per assay was: (1) 5×10^9; (2) 5×10^8; (3) 5×10^7; (4) 5×10^6; (5) 5×10^5; (6) 5×10^4; (7) 5×10^3; (8) 5×10^2 and (9) 0 (NTC). (B) Semi-logarithmic representation of the relative fluorescence intensity as a function of PCR cycle number. (C) Calibration plot (slope: -3.96, intercept: 46.7, $r = 0.9995$).