Chemically Modified Graphenes for Oxidation of DNA bases: Analytical Parameters

Madeline Shuhua Goha, Alessandra Bonannia, Adriano Ambrosia, Zdeněk Soferb, Martin Pumeraa*

a M. S. Goh, Dr. A. Bonanni, Dr. A. Ambrosi, Prof. M. Pumera; Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore; Fax: (65) 6791-196; E-mail: pumera@e.ntu.edu.sg

b Dr. Z. Sofer; Institute of Chemical Technology, Department of Inorganic Chemistry; Technicka 5, 166 28 Prague 6, Czech Republic

Figure S1. Peak-to-peak separation of neighbouring DNA bases (G-A; A-T and T-C) on graphene oxide (GO) and electrochemically reduced graphene oxide (ER-GO) in differential pulse voltammograms. Conditions: 50 mM phosphate buffer, pH 7.2.

* Electronic Supplementary Information

Figure S1. Peak-to-peak separation of neighbouring DNA bases (G-A; A-T and T-C) on graphene oxide (GO) and electrochemically reduced graphene oxide (ER-GO) in differential pulse voltammograms. Conditions: 50 mM phosphate buffer, pH 7.2.