Supporting Information

Solvent controlled sugar-rhodamine fluorescence sensor for Cu$^{2+}$ detection

Xing Ma a,b, Zhuowei Tan a, Guohua Wei a,*, Dongbin Wei a,*, Yuguo Du a,b,*

a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

b College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors: Guohua Wei, E-mail: wgh@rcees.ac.cn; Dongbin Wei, E-mail: weidb@rcees.ac.cn; Yuguo Du, E-mail: duyuguo@rcees.ac.cn

Materials and Measurements

Fluorescence spectra were obtained by using a Hitachi F-7000 Fluorescence Spectrometer equipped with a xenon lamp, 1.0 cm quartz cell, and slits of 1.0/1.0 nm. All chemicals were of reagent grade and used without further purification. Ultrapure water with a Millipore Purification System (Milli-Q water) was used throughout the analytical experiments. The 1H and 13C NMR spectra were recorded on ARX 400 spectrometers for solutions in CDCl$_3$. Chemical shifts are given in ppm downfield from internal Me$_4$Si. Mass spectrometry was conducted in a positive mode using MALDI-source. Thin layer chromatography (TLC) was performed on silica gel HF$_{254}$ with detection by charring with 30% (v/v) H$_2$SO$_4$ in MeOH or in some cases by a UV detector.

NMR data of probe 1

1HNMR (CDCl$_3$, 400 MHz) δ (TMS, ppm): 1.31-1.34 (m, 6H), 1.89-1.92 (m, 6H), 2.75-2.95 (m, 2H), 3.09-3.14 (m, 2H), 3.18-3.23 (m, 5H), 3.38-3.40 (m, 1H), 3.45-3.75 (m, 5H), 4.36 (d, $J = 3.2$ Hz, 1H), 5.65 (s, 1H), 6.12 (s, 1H), 6.19 (s, 1H), 6.34 (s, 1H), 6.37 (s, 1H), 7.04 (dd, $J = 1.6, 6.4$ Hz, 1H), 7.47-7.51 (m, 2H), 7.93 (dd, $J = 1.6, 6.4$ Hz, 1H).
Hz, 1H). 13CNMR (CDCl$_3$, 100 MHz) δ (TMS, ppm): 14.72 (2C), 16.72, 16.76, 38.32, 38.39, 62.33, 65.56, 67.60, 70.46, 70.82, 90.13, 96.14, 96.93, 103.36, 105.89, 117.66, 118.21, 123.26, 124.42, 127.59, 128.31, 128.43, 128.88, 133.71, 147.57, 147.81, 151.89, 152.60, 152.70, 170.29.

Sample preparation

The stock solutions of probe 1 (1.0 mM) and Cu$^{2+}$ (1.0 mM) were prepared in pure water containing 20% of acetonitrile, and their corresponding working solutions were simply prepared by diluting with water containing 20% of acetonitrile.

Fluorescence analysis

A 0.10 mL of probe 1 (1.0 mM) solution (containing 20% of acetonitrile) was blended with 0.1 mL of Cu$^{2+}$ solution (containing 20% of acetonitrile) in a 10 mL colorimetric tube. The mixture was equilibrated for 30 min and then the fluorescence intensity was recorded at $\lambda_{ex}/\lambda_{em} = 520/560$ nm alongside a reagent blank. The excitation and emission slits were both set to 1.0 nm.

Fig. S1. The three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) of probe 1 (10 µM) without and with presence of 10 µM Cu$^{2+}$.
Fig. S2. The change of fluorescence intensity ($\lambda_{ex}/\lambda_{em} = 520/560$ nm) of probe 1 (10 µM) with time in the presence of 10 µM of Cu$^{2+}$ in water containing 20% CH$_3$CN at room temperature.

Fig. S3. MALDI-TOF-Mass spectrum of the raw solution (namely, probe 1 + Cu$^{2+}$) in a short 5 min reaction time.
Fig. S4. MALDI-TOF-Mass spectrum of the raw solution (namely, probe 1 + Cu$^{2+}$) in a long 30 min reaction time.

Fig. S5. UV-Vis absorption titration spectra of probe 1 (10 µM) with Cu$^{2+}$ from 0 to 10 µM in water containing 20% (v/v) of CH$_3$CN. Inset: The plot of UV-Vis absorbance change of probe 1 (10 µM) against varied concentration of Cu$^{2+}$ from 0 to 10 µM at $\lambda = 520$ nm.