Supplementary Information

Direct Analysis of Steviol Glycosides from Stevia Leaves by Ambient Ionization Mass Spectrometry from Whole Leaf

J. Isabella Zhang,§a Xin Li,§a Zheng Ouyang b, R. Graham Cooks* a

a Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

b Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

§These authors contributed equally to this work.

*Correspondence to: Dr. R. Graham Cooks, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA. Phone: 765-494-5262. Fax: 765-494-9421. E-mail: cooks@purdue.edu.
Supplementary Data:

Figure S-1 Positive ion mode leaf spray mass spectrum of fresh *Stevia* leaf recorded under nitrogen to avoid the oxygen in the air. No oxidation products of *Stevia* glycosides are observed from full scan mass spectrum.

Figure S-2 a) Positive ion mode LTP mass spectrum for fresh untreated *Stevia* leaf. No *Stevia* glycosides are observed directly from full scan mass spectrum. b) Positive ion mode paper spray mass spectrum for a piece of *Stevia* leaf on paper.

Figure S-3 a) MS2 and b) MS3 spectra of 787 [M-H]$^-$, M represents dulcoside A, which is not observed directly in the negative ion mode full scan leaf spray mass spectrum of fresh *Stevia* leaves.

Figure S-4 Leaf spray tandem mass spectra of fresh *Stevia* leaves to verify the presence of *Stevia* glycosides which are not observed directly from full scan mass spectrum. a) MS2 of m/z 641 [M-H]$^-$, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), b) MS2 of 677 [M+Cl]$^-$, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), c) MS2 of 971 [M+Cl]$^-$, in the negative ion mode, M represents rebaudioside F, d) MS2 of m/z 1167, in the positive ion mode, e) MS2 of m/z 1127, in the negative ion mode. Paper spray tandem mass spectra of rebaudioside D standard, f) MS2 of 1167 [M+K]$^+$, in the positive ion mode, g) MS2 of 1127 [M-H]$^-$, in the negative ion mode, M represents rebaudioside D.

Figure S-5 Positive ion mode leaf spray mass spectra of *Stevia* leaf in different conditions, a) dehydrated *Stevia* Leaf and b) stalk of *Stevia* Leaf.
Figure S-1 Positive ion mode leaf spray mass spectrum of fresh *Stevia* leaf recorded under nitrogen to avoid the oxygen in the air. No oxidation products of *Stevia* glycosides are observed from full scan mass spectrum.
Figure S-2 a) Positive ion mode LTP mass spectrum for fresh untreated Stevia leaf. No Stevia glycosides are observed directly from full scan mass spectrum. b) Positive ion mode paper spray mass spectrum for a piece of Stevia leaf on paper.
Figure S-3 a) MS² and b) MS³ spectra of 787 [M-H]⁻. M represents dulcoside A, which is not observed directly in the negative ion mode full scan leaf spray mass spectrum of fresh *Stevia* leaves.
Figure S-4 Leaf spray tandem mass spectra of fresh Stevia leaves to verify the presence of Stevia glycosides which are not observed directly from full scan mass spectrum. a) MS² of m/z 641 [M-H]⁻, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), b) MS² of 677 [M+Cl]⁻, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), c) MS² of 971 [M+Cl]⁻, in the negative ion mode, M represents rebaudioside F, d) MS² of m/z 1167, in the positive ion mode, e) MS² of m/z 1127, in the negative ion mode. Paper spray tandem mass spectra of rebaudioside D standard, f) MS² of 1167 [M+K]⁺, in the positive ion mode, g) MS² of 1127 [M-H]⁻, in the negative ion mode, M represents rebaudioside D.
Figure S-5 Positive ion mode leaf spray mass spectra of Stevia leaf in different conditions, a) dehydrated Stevia Leaf and b) stalk of Stevia Leaf.