Supporting information for:

Fluorometric sensor based on bisterpyridine metallopolymer: Detection of cyanide and phosphates in water.

Andreas Wild, Andreas Winter, Martin D. Hager, Ulrich S. Schubert*

Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, D-07743 Jena, Germany.

Jena Center for Soft Matter (JCSM), Humboldtstr. 10, D-07743 Jena, Germany.

Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

Figure S1. 1H NMR (CD$_3$OD, 400 MHz) of 1 and 2.

Figure S2. Left: SEC trace of 1. Right: MALDI-TOF MS spectrum of 1.
Figure S3. Emission spectra of 2 (water, c = 5.8 \times 10^{-8} \text{ M}, \lambda_{ex} = 400 \text{ nm}) upon addition of NaOAc (water, c = 11.6 \mu\text{M} or 0.116 \text{ mM}).

Figure S4. 1H NMR a) 1 (CD$_3$OD, 400 MHz), b) 2 (CD$_3$OD, 400 MHz), c) 2 upon addition of 50 equivalents Na$_3$PO$_4$ (D$_2$O, 200 MHz).
Figure S5. UV-Vis absorption spectra (10^{-6} M, water) of 1 and 2, upon addition of KCN.

Figure S6. Emission spectra of 2 (water, $c = 5.8 \times 10^{-8}$ M, $\lambda_{ex} = 400$ nm) upon addition of NaOH or H$_3$PO$_4$ (water, $c = 11.6$ μM).
Figure S7. 1H NMR (CD$_2$Cl$_2$, 300 MHz) of 2 upon addition of one equivalent NaOH.

Calculation of the dissociation constants

The dissociation constants for the complex AB$_n$ of analyte (B) by fluorophore (A) were calculated from Eq. S1.1,2

\[
A + nB \leftrightarrow AB_n
\]

\[
K_d^n = \frac{[A][B]^n}{[AB_n]}
\]

(Eq. S1)

When $[A]_0 = [A] + [AB_n]$ is the initial concentration of A and $[B]_0$ the initial concentration of B. Therefore:

\[
K_d^n = \frac{([A]_0 - [AB_n])[B]^n}{[AB_n]} \quad \text{and} \quad [AB_n] = \frac{[A]_0[B]^n}{K_d^n + [B]^n}
\]

(Eq. S2)

If I_A and I_{ABn} are the proportional constants for the fluorescence intensity:

$F_0 = I_A[A]_0$ and $F_{\text{end}} = I_{ABn}[A]_0$
\[F_x = I_d[A] + I_{AB}[AB_n] \]
\[= I_d([A_0] - [AB_n]) + I_{AB}[AB_n] \]
\[= I_d[A_0] + (I_{AB_n} - I_d)[AB_n] \]
\[= I_d[A_0] + (I_{AB_n} - I_d) \left(\frac{[B]^n}{K_d^n + [B]^n} \right) \]
\[= F_0 + \frac{(F_{\text{end}} - F_0)[B]^n}{K_d^n + [B]^n} \]
(Eq. S3)

What can also be written as Eq. 1 or Eq. S4.

\[\frac{F_0 - F_x}{F_x - F_{\text{end}}} = \left(\frac{[B]}{K_d} \right)^n \]
(Eq. S4)

The plot of log\([F_0 - F_x]/[F_x - F_{\text{end}}]\) vs. log[B] provides the binding sites n (from the slope) and the value of log[B] at log\((F_0 - F_x)/(F_x - F_{\text{end}})\) = 0 gives log(Kd).\(^{1}\)

Figure S8. Double-logarithmic plot for the spectral change of 2 (water, c = 5.8 \times 10^{-8} \text{ M}, \lambda_{ex} = 400 \text{ nm}) upon addition of Na\(_3\)PO\(_4\) (water, c = 11.6 \mu\text{M}).
Figure S9. Emission spectra of 2 (water, $c = 5.8 \times 10^{-8}$ M, $\lambda_{ex} = 400$ nm) upon addition of NaH$_2$PO$_4$ (water, $c = 11.6$ μM or 0.116 mM).

Most important for an efficient phosphate complexation is the pH value of the solution. A comparison of Na$_3$PO$_4$, Na$_2$HPO$_4$ and NaH$_2$PO$_4$ reveals clear differences (Figures 2, 3 and 4). Na$_3$PO$_4$ as well as Na$_2$HPO$_4$ possess the ability to complex ZnII and, therefore, enable a decomplexation of the ZnII terpyridine complex. In contrast, NaH$_2$PO$_4$ behaves like most of the other ions, just coordinates to ZnII and, consequently, does not shift the emission wavelength (Figure S9). This knowledge enables a clear distinction between the “alkaline” phosphates (Na$_3$PO$_4$ and Na$_2$HPO$_4$) as well as NaH$_2$PO$_4$ and, thereby, for a given phosphate concentration, estimation of the pH value.

Figure S10. Double-logarithmic plot for the spectral change of 2 (water, $c = 5.8 \times 10^{-8}$ M, $\lambda_{ex} = 400$ nm) upon addition of Na$_4$P$_2$O$_7$ (water, $c = 11.6$ μM).
Figure S11. Double-logarithmic plot for the spectral change of 2 (water, c = 5.8 × 10⁻⁸ M, λ_{ex} = 400 nm) upon addition of KCN (water, c = 11.6 μM).

Table S1. Overview about the composition of tap water from Jena, Germany.³

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>c</th>
<th>equivalents<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mg/l]</td>
<td>[M]</td>
<td></td>
</tr>
<tr>
<td>phosphate</td>
<td>0.1</td>
<td>1.0 × 10⁻⁶</td>
<td>17</td>
</tr>
<tr>
<td>chloride</td>
<td>15.3</td>
<td>4.4 × 10⁻⁴</td>
<td>7586</td>
</tr>
<tr>
<td>nitrite</td>
<td>0.002</td>
<td>4.3 × 10⁻⁸</td>
<td>1</td>
</tr>
<tr>
<td>nitrate</td>
<td>5.28</td>
<td>8.5 × 10⁻⁵</td>
<td>1466</td>
</tr>
<tr>
<td>ammonium</td>
<td><0.02</td>
<td><1.1 × 10⁻⁶</td>
<td><19</td>
</tr>
<tr>
<td>fluoride</td>
<td>0.11</td>
<td>5.8 × 10⁻⁶</td>
<td>100</td>
</tr>
<tr>
<td>iron</td>
<td>0.01</td>
<td>1.7 × 10⁻⁷</td>
<td>3</td>
</tr>
<tr>
<td>manganese</td>
<td><0.01</td>
<td><1.8 × 10⁻⁷</td>
<td>3</td>
</tr>
<tr>
<td>potassium</td>
<td>4.55</td>
<td>1.8 × 10⁻⁴</td>
<td>3100</td>
</tr>
<tr>
<td>sodium</td>
<td>10.9</td>
<td>4.7 × 10⁻⁴</td>
<td>8103</td>
</tr>
<tr>
<td>uranium</td>
<td>0.0061</td>
<td>2.6 × 10⁻⁸</td>
<td>0.45</td>
</tr>
</tbody>
</table>

^a Equivalents in comparison to concentration of 2 (5.8 × 10⁻⁸ M).

2. Personal message, Prof. Dr. Shin Mizukami (smizukami@mls.eng.osaka-u.ac.jp).