1	SUPPLEMENTAL MATERIALS
2	
3	
4	Characterization of Microfabricated Emitters:
5	In Pursuit of Improved Nano Electrospray Ionization Performance
6	
7	Xinyun Wu, Richard D. Oleschuk, Natalie M. Cann*
8	Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
9	
10	

12

13

Fig S 1. Mesh applied for different ESI emitter models: (A) X-Z plane of a uniform 14 2D Cylindrical mesh with 48(120) cells in X(Z) directions; (B) X-Y slice showing the 15 Cartesian mesh for a single-aperture emitter, with 48, 48, and 120 cells in the X, Y, 16 17 and Z directions respectively; (C) X-Z view showing the non-uniform Cartesian mesh for two-hole emitter model with a total of 180,42,100 cells in the X, Y, and Z 18 directions, respectively; (D) X-Z plane of the non-uniform 3D Cartesian mesh for 3-19 20 aligned emitter model with 280, 42, and 100 in the X, Y, and Z directions, respectively; (E) X-Y slice showing the non-uniform Cartesian mesh for the triangular 21 22 3-hole emitter model with 160,112, and130 cells in the X,Y, and Z directions 23 respectively.

25 Fig S 2. (A) Boundary conditions for single-aperture emitter model with cylindrical 26 mesh (R-Z plane) (B) Boundary conditions for single aperture emitter model with 27 Cartesian mesh covering one quarter of the computational region (X-Y view); (C) 28 Boundary conditions for two-aperture emitter with Cartesian mesh covering upper 29 half of the model (X-Y view); (D) Boundary conditions for three aligned-aperture 30 emitter with Cartesian mesh covering upper half of the model(X-Y view);(E) 31 Boundary conditions for the triangular three-channel emitter with Cartesian mesh (X-32 Y view). The capitals indicated in the figure represent the following: V-velocity 33 boundary, S-symmetric boundary, O-outflow boundary, C- continuative boundary. 34 For panels B to E, velocity boundary conditions are applied below and continuative 35 36 boundary conditions above the images shown.

41

Fig S 4. Quantitative assessment of the steady state for the same system and conditions as in Fig. 2: (A) The evolution of mean kinetic energy of the simulation system with time; (B) The evolution of electric potential, electric charge density (C), electric field magnitude (D), and axial velocity (E) probed at a point on the jet surface close to the counter electrode plate.

Fig S 5. Generation of the Taylor-cone, for the Cartesian mesh, under an ESI voltage

- 50 of 800V and inflow velocity 0.09 m/s plotted together with electric charge density
- 51 contours.

Fig S 6. A snapshot of electrosprays for the two-hole emitter where the channels are
well separated, by 180 μm, and demonstrate relatively independent cone-jets. The
applied ESI voltage is 2kV and the inflow velocity is 0.09 m/s.