Supporting Information for

Ferrocene-based anions receptor with amide and triazolium Donor Groups

Qian-Yong Cao,¹,² Tuhin Pradhan,¹ Min Hee Lee,¹ Kwanghyun No,³ Jong Seung Kim¹,*

¹Department of Chemistry, Korea University, Seoul 136-701, Korea. ²Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China. ³Department of Chemistry, Sookmyung Women’s University, Seoul 140-742, Korea

Corresponding authors’ e-mail: jongskim@korea.ac.kr (JSK); hyun@sookmyung.ac.kr (KN)

Contents

Experimental Section --- page S2-S4

IR data (Figure S1)-- page S4

Calculation Results (Figure S2) ----------------------------- page S5

CVs-DPVs data (Figures S3-S5) ------------------------------ page S5-S6

UV-vis spectra (Figure S6) --------------------------------- page S7

¹H NMR titration data (Figure S7-S11) ----------------------- page S7-S9

Job’s Plot (Figure S12) ------------------------------------- page S10

NMR and ESI-MS spectra of compounds (Figures S13-S18)----- page S10-14

References-- page S14
Experimental Section

General methods

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Flash chromatography was carried out on silica gel (230-400 mesh). NMR spectra were recorded using Varian instruments (400MHz and 300 MHz). Chemical shifts were expressed in ppm and coupling constants (J) in Hz.

CV Spectroscopic Method

Electrochemical measurements were performed with a CHI 624C instruments. All electrochemical measurements were carried out in a one-compartment cell under a nitrogen atmosphere at 25°C, equipped with a Pt disk working electrode, a platinum wire counter electrode, and a Ag/AgNO₃ reference electrode. The working electrode surface was carefully polished with basic Al₂O₃-water slurry, washed with MeOH and sonicated in a H₂O-MeOH-CH₃CN 1:1:1 mixture at 40 °C for 15 minutes prior to use. All potentials in this paper were recorded in CH₃CN and are quoted relative to Ag/AgNO₃, and were calibrated using decamethylferrocene (E₁/₂ = 0.46 V vs Ag/Ag⁺). The supported electrolyte was a 0.10 M CH₂Cl₂ solution of tetrabutylammonium hexafluorophosphate (TBAPF₆). Differential pulse voltammetry (DPV) measurements were also carried out using a CHI 610C instruments with a 50 ms pulse width.

X-ray crystallographic analysis

Crystals were obtained by direct diffusion of hexane into a solution of the target compound 1 in dichloromethane. A suitable single crystal was mounted in a glass fiber, and diffraction measurements were taken with Bruker Smart APEX CCD-based diffractometer with Mo Kα graphite monochromated radiation. The structures were solved by direct methods using the program SHELXL-97. The refinement and all further calculations were carried out using SHELXL-97. The non-H atoms were refined anisotropically, using weighted full matrix least-squares on F².

Calculation Details.

Geometries of 1 and 1·Br⁻ system in 'syn' and 'anti' conformations have been optimized using DFT (Density Functional Theory) method at B3LYP/6-31G(d) level of theory. No imaginary frequencies were available after vibration analysis of the optimized structures, which implied that
each of the optimized structures was at the real minimum on the potential energy surfaces (PES). Single point energy calculations have been performed on their optimized structures employing same level of theory. Basis set superposition error (BSSE) has been corrected by counterpoise correction method S1 applied on an optimized geometry while calculating single point energy for 1·Br- system. We have followed the suggested geometry cutoffs for D-H⋯A hydrogen bond definition, according to which, H⋯A distances should be < 3.0 Å and D-H⋯A angles should be > 110°, where D and A represent respectively H-bond donor and acceptor. All calculations were performed using Gaussian 09 W program package.

Synthesis of 3

Under nitrogen, a solution of (Chlorocarbonyl)ferrocene (2, 0.248 g, 1.0 mmol), propargylamine (0.055 g, 1.0 mmol) and triethylamine (0.5 mL) in CH₂Cl₂ (30 mL) was stirred at room temperature for 24 h. After removal of the solvents, the crude product was purified over silica gel using CH₂Cl₂/MeOH (v/v, 98:2) as the eluents to yield 3 as a orange solid (0.220 g, 82.4%). ¹H NMR (CDCl₃, 300 MHz): δ 5.81 (br, 1 H), 4.69 (t, 2 H, J = 2.0 Hz), 4.36 (t, 2 H, J = 2.0 Hz), 4.23 (s, 5 H); 4.18 (q, 1 H), 2.28 (t, 1 H, J = 2.8 Hz).

Synthesis of 5

Under nitrogen, a solution of 3 (267 mg, 1.0 mmol), 4-tert-butylphenyl azide (4, 175 mg, 1.0 mmol), and (EtO)₃P·CuI (71 mg, 0.2 mmol) in 30 mL dry toluene was stirred under reflux for 45 min. The solvent was removed by evaporation under vacuum and the crude was purified by silica gel column chromatography (CH₂Cl₂/MeOH, 98:2) to yield 5 as a yellow solid (365 mg, 83.0%). ¹H NMR (CDCl₃, 300 MHz): δ 8.09 (s, 1 H), 7.65 (d, 2 H, J = 8.8 Hz), 7.51 (d, 2 H, J = 8.8 Hz) 6.89
Synthesis of 1·Br\(^{-}\) and 1·PF\(_{6}\)\(^{-}\)

A solution of 5 (221 mg, 0.5 mmol) and benzyl bromide (255 mg, 1.5 mmol) in 30 mL acetonitrile was refluxed for 24 h. After cooling to room temperature, solvent was removed in vacuo, and the resulting residue was purified by silica gel column chromatography (EtOAc/MeOH = 20:1 as eluent) to give 1·Br\(^{-}\) (158 mg, 0.26 mmol, 51.6% yield) as an orange solid.

100 mg (0.16 mmol) of 1·Br\(^{-}\) (in 10 ml DCM) was added to a saturated methanolic solution of NH\(_{4}\)PF\(_{6}\) (5 mL) and stirred for 2 h. The solvent was removed by evaporation under vacuum, and the crude was redissolved in DCM and filtered to remove the undissolvable aminium salts. Analytically pure product (92 mg, 0.14 mmol, 84.8% yield) was obtained after crystallization from hexane/DCM (1:1, v/v) solution. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 8.88 (s, 1 H), 7.71-7.74 (m, 2 H), 7.62-7.65 (m, 2 H), 7.46 (s, 5 H), 7.27 (br, 1 H), 6.12 (s, 2 H), 4.78-4.82 (m, 4 H), 4.40 (t, 2 H, J = 2.0 Hz), 4.20 (s, 5 H); 1.36 (s, 9 H).

\(^{13}\)C NMR (CDCl\(_3\), 100 MHz): 172.8, 156.6, 143.3, 132.3, 131.3, 130.2, 129.9, 128.7, 128.3, 127.9, 121.1, 73.6, 71.5, 70.1, 68.7, 56.1, 35.4, 32.2, 31.3 ppm. ESI-MS (ES\(^+\)): m/z = 533.0 [M\(^+\) - PF\(_{6}\)]. HR-FAB-MS: Calcd 678.4290; Found: m/z = 678.1646 [M\(^+\)].

Elemental Analysis, Calcd for C\(_{31}\)H\(_{33}\)F\(_{6}\)FeN\(_{4}\)OP\(^+\)-H\(_{2}\)O: C, 53.41; H, 5.02. Found: C, 53.65; H, 5.11.

Figure S1. IR spectrum of 1·PF\(_{6}\)\(^{-}\) and 1·Br\(^{-}\) and 5 in the solid state
Figure S2. Optimized structures of 'anti' (left) and 'syn' (right) conformations of 1. Hydrogen atoms except in amide and triazolium donors were omitted for clarity. The energy difference between the two conformations is ~0.6 Kcal/Mole and the 'syn' conformation is energetically more stable than the 'anti' conformation.

Figure S3. DPV titration profile of 1·PF6– (0.2 mM) upon addition of various amount of F– in CH2Cl2 solution. Reference electrode = Ag/AgNO3; supporting electrolyte = [n-Bu4N]PF6 (0.1 M); scan rate = 100 mV S⁻¹.
Figure S4. CV titration profile of 1-PF$_6^-$ (0.2 mM) upon addition of various amount of Cl⁻ in CH$_2$Cl$_2$ solution.

Reference electrode = Ag/AgNO$_3$; supporting electrolyte = [n-Bu$_4$N]PF$_6$ (0.1 M); scan rate = 100 mV S$^{-1}$.

Figure S5. DPV titration profile of 1-PF$_6^-$ (0.2 mM) upon addition of various amount of Cl⁻ in CH$_2$Cl$_2$ solution.

Reference electrode = Ag/AgNO$_3$; supporting electrolyte = [n-Bu$_4$N]PF$_6$ (0.1 M); scan rate = 100 mV S$^{-1}$.
Figure S6. UV-vis spectra of 1 (0.04 mM) and after adding two equiv F\(^-\) in CH\(_2\)Cl\(_2\) solution

Figure S7. \(^1\)H NMR titration spectra of 1-PF\(_6\)^- (CDCl\(_3\), 8 mM) upon addition of increasing amounts of F\(^-\)
Figure S8. 1H NMR titration spectra of 1·PF$_6^-$ (CDCl$_3$, 8 mM) upon addition of increasing amounts of AcO$^-$

Figure S9. 1H NMR titration spectra of 1·PF$_6^-$ (CDCl$_3$, 8 mM) upon addition of increasing amounts of Cl$^-$
Figure S10. 1H NMR titration spectra of 1·PF_6 (CDCl$_3$, 8 mM) upon addition of increasing amounts of Br$^-$

Figure S11. 1H NMR titration spectra of 1·PF_6 (CDCl$_3$, 8 mM) upon addition of increasing amounts of I$^-$
Figure S12. Job’s Plot for 1·PF₆⁻ in CDCl₃ with Cl⁻ by NMR spectroscopy in CDCl₃, in which the chemical shift of amide (Ha) was monitored. [1·PF₆⁻] + [Cl⁻] = 10 mM.

Figure S13. ¹H NMR spectrum of 3 in CDCl₃ solution
Figure S14. 1H NMR spectrum of 5 in CDCl$_3$ solution

Figure S15. ESI-MS (ES$^+$) spectrum of 5
Figure S16. 1H NMR spectrum of $1\cdot PF_6$ in CDCl$_3$ solution

Figure S17. 13C NMR spectrum of $1\cdot PF_6$ in CDCl$_3$ solution
Figure S18. ESI-MS (ES⁺) spectrum of 1·PF₆

References

