Supporting information

Migration Behaviour of Discontinuous Buffers in Capillary Electrophoresis during Protein Enrichment

Ting Li, Christina J. Booker and Ken K.-C. Yeung*

Department of Chemistry and Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.
Tel: +1 (519) 661 2111
*E-mail: kyeung@uwo.ca

Figure S1. Simulated results of discontinuous buffers under various pH combinations at t = 1000 seconds. The pH values of acetate/ammonium buffer were: (A) 4.25/8.75, (B) 4.25/9.25, (C) 4.25/9.75, (D) 4.25/10.25, (E) 4.75/9.75, (F) 5.25/9.75, and (G) 5.25/10.25. Panels (A-D) correspond to single myoglobin peaks observed in Fig. 3B. Panels (E-G) correspond to split myoglobin peaks observed in Fig. 3B. Acetate conc. (—), conductivity (—), ammonium conc. (—), and pH (—). Computer simulation conditions were same as in Fig. 3A.
Figure S2. Simulated results of discontinuous buffers under various concentrations (acetate/ammonium, mM/mM) at $t = 1000$ seconds: (A) 10/10, (B) 10/50, (C) 50/50, and (D) 50/10. Acetate conc. (—), conductivity (—), ammonium conc. (—), and pH (—). Initial buffer junction at 10 mm, the computer simulation setup same as in Fig. 4A.