Supporting Information

Preparative Separation of α- and β-Santalenes and (Z)-α- and (Z)-β-Santalols using Silver Nitrate-Impregnated Silica Gel Medium Pressure Liquid Chromatography and Analysis of Sandalwood Oil

Pankaj P. Daramwar a, Prabhakar Lal Srivastava a, Balaraman Priyadarshini a, Hirekodathakallu V. Thulasiram a,b*

 a Chemistry-Biology Unit, Division of Organic Chemistry, National Chemical Laboratory, Council of Scientific and Industrial Research (CSIR), Pune 411008, India
 b Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mall Road, New Delhi-110007, India

* Corresponding author:

 Dr. Thulasiram H. V.
 National Chemical Laboratory, Pune 411008, India
 Telephone +91 20 25902478
 Fax +91 20 25902629
 E-mail: hv.thulasiram@ncl.res.in
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig S1: 1H NMR spectrum of 1 in CDCl$_3$ at 500 MHz.</td>
<td>4</td>
</tr>
<tr>
<td>Fig S2: 13C NMR spectrum of 1 in CDCl$_3$ at 125 MHz.</td>
<td>5</td>
</tr>
<tr>
<td>Fig S3: DEPT NMR spectrum of 1 in CDCl$_3$ at 125 MHz.</td>
<td>6</td>
</tr>
<tr>
<td>Fig S4: 1H NMR spectrum of 2 & 3 in CDCl$_3$ at 500 MHz.</td>
<td>7</td>
</tr>
<tr>
<td>Fig S5: 13C NMR spectrum of 2 & 3 in CDCl$_3$ at 125 MHz.</td>
<td>8</td>
</tr>
<tr>
<td>Fig S6: DEPT NMR spectrum of 2 & 3 in CDCl$_3$ at 125 MHz.</td>
<td>9</td>
</tr>
<tr>
<td>Fig S7: 1H NMR spectrum of 4 in CDCl$_3$ at 200 MHz.</td>
<td>10</td>
</tr>
<tr>
<td>Fig S8: 13C NMR spectrum of 4 in CDCl$_3$ at 50 MHz.</td>
<td>11</td>
</tr>
<tr>
<td>Fig S9: DEPT NMR spectrum of 4 in CDCl$_3$ at 50 MHz.</td>
<td>12</td>
</tr>
<tr>
<td>Fig S10: 1H NMR spectrum of 5 in CDCl$_3$ at 500 MHz.</td>
<td>13</td>
</tr>
<tr>
<td>Fig S11: 13C NMR spectrum of 5 in CDCl$_3$ at 125 MHz.</td>
<td>14</td>
</tr>
<tr>
<td>Fig S12: DEPT NMR spectrum of 5 in CDCl$_3$ at 125 MHz.</td>
<td>15</td>
</tr>
<tr>
<td>Fig S13:</td>
<td>1H NMR spectrum of 6 & 7 in CDCl$_3$ at 500 MHz.</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Fig S14:</td>
<td>13C NMR spectrum of 6 & 7 in CDCl$_3$ at 125 MHz.</td>
</tr>
<tr>
<td>Fig S15:</td>
<td>DEPT NMR spectrum of 6 & 7 in CDCl$_3$ at 125 MHz.</td>
</tr>
<tr>
<td>Fig S16:</td>
<td>1H NMR spectrum of 11 in CDCl$_3$ at 200 MHz.</td>
</tr>
<tr>
<td>Fig S17:</td>
<td>13C NMR spectrum of 11 in CDCl$_3$ at 50 MHz.</td>
</tr>
<tr>
<td>Fig S18:</td>
<td>DEPT NMR spectrum of 11 in CDCl$_3$ at 50 MHz.</td>
</tr>
<tr>
<td>Fig S19:</td>
<td>Standard graphs for purified components (1, 2 & 3, 4, 5, 6 & 7, 8, 9, 11).</td>
</tr>
<tr>
<td>Fig S20:</td>
<td>Co-injection of purified components (1, 2 & 3, 4, 5, 6 & 7, 8, 9, 11) with Sandalwood oil</td>
</tr>
</tbody>
</table>
 Fig S1: 1H NMR spectrum of 1 in CDCl$_3$ at 500 MHz.
Fig S2: 13C NMR spectrum of 1 in CDCl$_3$ at 125 MHz.
Fig S3: DEPT NMR spectrum of 1 in CDCl₃ at 125 MHz.
Electronic Supplementary Material (ESI) for Analyst
This journal is © The Royal Society of Chemistry 2012

Fig S4: 1H NMR spectrum of 2 & 3 in CDCl$_3$ at 500 MHz.
Fig S5: 13C NMR spectrum of 2 & 3 in CDCl$_3$ at 125 MHz.
Fig S6: DEPT NMR spectrum of 2 & 3 in CDCl$_3$ at 125 MHz.
Fig S7: 1H NMR spectrum of 4 in CDCl$_3$ at 200 MHz.
Fig S8: 13C NMR spectrum of 4 in CDCl$_3$ at 50 MHz.
Fig S9: DEPT NMR spectrum of 4 in CDCl₃ at 50 MHz.
Fig S10: 1H NMR spectrum of 5 in CDCl$_3$ at 500 MHz.
Fig S11: 13C NMR spectrum of 5 in CDCl$_3$ at 125 MHz.
Fig S12: DEPT NMR spectrum of 5 in CDCl₃ at 125 MHz.
Fig S13: 1H NMR spectrum of **6 & 7** in CDCl$_3$ at 500 MHz.
Fig S14: 13C NMR spectrum of 6 & 7 in CDCl$_3$ at 125 MHz.
Fig S15: DEPT NMR spectrum of 6 & 7 in CDCl$_3$ at 125 MHz.
Fig S16: 1H NMR spectrum of 11 in CDCl$_3$ at 200 MHz.
Fig S17: 13C NMR spectrum of 11 in CDCl$_3$ at 50 MHz.
Fig S18: DEPT NMR spectrum of 11 in CDCl₃ at 50 MHz.
Fig S19: Graphs from quantification studies of components of sandalwood oil:

A) (Z)-α-Santalol (1):

![Graph A]

\[y = 1407x + 146.9 \]
\[R^2 = 0.999 \]

B) (Z)-(β + epi-β)-Santalol (2 & 3):

![Graph B]

\[y = 1254x + 117.0 \]
\[R^2 = 0.999 \]

C) (Z)-α-trans-Bergamotol (4):

![Graph C]

\[y = 1591x + 92.29 \]
\[R^2 = 0.999 \]

D) α-Santalene (5):

![Graph D]

\[y = 1352x + 231.6 \]
\[R^2 = 0.999 \]
E) (β + epi-β)-Santalene (6 & 7):

\[y = 1660x + 124.4 \]
\[R^2 = 0.999 \]

F) (-)α-Bisabolol (8):

\[y = 1836x + 99.54 \]
\[R^2 = 0.999 \]

G) (E), (E)-Farnesol (9):

\[y = 1280x + 42.43 \]
\[R^2 = 0.999 \]

H) (Z)-Lanceol (11):

\[y = 1372x - 39.31 \]
\[R^2 = 0.999 \]
Fig. S20: Co-injection of purified components with Sandalwood oil:

A) Sandalwood oil

B) Co-injection of (Z)-α-Santalol (1) with Sandalwood oil

C) Co-injection of (Z)-(β+ epi-β)-Santalol (2&3) with Sandalwood oil

D) Co-injection of (Z)-α-trans-Bergamotol (4) with Sandalwood oil

E) Co-injection of (-)-α-Bisabolol (8) with Sandalwood oil

F) Co-injection of (E), (E)-Farnesol (9) with Sandalwood oil
G) Co-injection of (Z)-Lanceol (11) with Sandalwood oil

H) Santalenes mixture

H) Co-injection of α-Santalene (5) with Sandalwood oil.

J) Co-injection of (β+ epi-β)-Santalene (6&7) with Sandalwood oil