Electronic Supplementary Information

A novel fluorescent sensor for detection of highly reactive oxygen species, and for imaging such endogenous hROS in the mitochondria of living cells

Fei Liu, Tong Wu, Jianfang Cao, Hua Zhang, Mingming Hu, Shiguo Sun, Fengling Song, Jiangli Fan, Jingyun Wang and Xiaojun Peng*

aState Key Laboratory of Fine Chemicals, bSchool of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China.

Dye synthesis

The synthetic route for PTZ-Cy2 is outlined in Scheme S1.

Scheme S1. Synthetic route of dye PTZ-Cy2. i) DMF, 1,2-dichloroethane, POCl₃, reflux 8 h, yield 63%; ii) toluene, CH₃CH₂I, reflux 10 h, yield 92%; iii) ethanol, piperidine, reflux 12 h, yield 65%.

Intermediate products a and b were synthesized according to literature procedures. ¹⁻²

Synthesis of 3-(2-(1’,3’,3’-trimethyl-indolium-2’-yl) vinyl]-phenothiazine (PTZ-Cy2)

1-Ethyl-2, 3, 3’-trimethylindolenium quaternized salt b (1.58 g, 5.0 mmol), and aldehyde a (2.4 g, 4.5 mmol) were added to a 100 mL flask with 50 mL ethanol, followed by catalytic piperidine (1.0 mL). The resulting mixture was stirred for 12 h under reflux. The residue was recrystallized from ethanol to give the desired product in 65% yield. 1H NMR (400 MHz, d₆-DMSO) δ 9.55 (s, 1H), 8.21 (d, J = 16.0 Hz, 1H), 7.84 (m, 4H), 7.57 (m, 2H), 7.36 (d, J = 16.0 Hz, 1H), 7.03 (s, J = 7.2 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.84 (s, J = 7.2 Hz, 1H), 6.72 (m, 2H), 4.61 (d, J = 7.2 Hz, 2H), 1.75 (s, 6H), 1.41 (t, J = 7.2 Hz, 3H). HRMS-ESI: m/z calcd. M⁺ for C₂₆H₂₅N₂S⁺, 397.1733; found, 397.1729.
13C NMR (100 MHz, d$_6$-DMSO) δ 180.55, 153.29, 146.91, 143.90, 140.99, 138.95, 129.86, 129.46, 128.99, 128.68, 128.42, 127.98, 123.99, 123.46, 122.29, 114.77, 114.74, 108.27, 105.58, 73.98, 52.03, 30.16, 26.41, 14.00, 10.88.

3-[2-(1',3',3'-thimethyl-indolium -2'-yl)vinyl]-5-oxo-phenothiazine (OPTZ-Cy2)

1H NMR (400 MHz, d$_6$-DMSO) δ 11.67 (s, 1H), 8.97 (s, 1H), 8.55 (m, 2H), 8.04 (d, $J = 7.6$ Hz, 1H), 7.90 (d, 2H), 7.72 (d, 1H), 7.63 (m, 3H), 7.52 (m, 2H), 7.35 (t, $J = 7.2$ Hz, 1H), 4.72 (q, $J = 7.2$ Hz, 2H), 1.83 (s, 6H), 1.48 (t, $J = 7.2$ Hz, 3H). HRMS-ESI: m/z calcd. M$^+$ for C$_{26}$H$_{30}$N$_2$O$^+$, 413.1682; found, 413.1681.

3-carbaldehyde 5-oxo-phenothiazine (OPTA)

1H NMR (400 MHz, d$_6$-DMSO) δ 11.56 (s, 1H), 9.96 (s, 1H), 8.55 (s, 1H), 8.05 (m, 2H), 7.70 (m, 1H), 7.51 (m, 2H), 7.33 (t, $J = 7.2$ Hz, 1H). HRMS-ESI: m/z calcd. M for C$_{13}$H$_9$NO$_2$S, 243.0354; found, 243.0358.

Preparation of stock solutions for generation of ROS$^{3-6}$

(a) H$_2$O$_2$

H$_2$O$_2$ was diluted appropriately in water. The concentration of H$_2$O$_2$ was determined based on the molar extinction coefficient at 240 nm (43.6 M$^{-1}$ cm$^{-1}$). Then, a H$_2$O$_2$ stock solution in water was prepared.

(b) •OH

To a solution of H$_2$O$_2$ in 100 μM sodium phosphate buffer at pH 7.4 as a cosolvent, the FeSO$_4$ solution (10 μM) was added at room temperature. Then, •OH was generated from Fe$^{2+}$ and H$_2$O$_2$ (Fenton reaction).

(c) OCl$^-$

NaOCl solution was diluted appropriately in 0.1 M NaOH aq. The concentration of OCl$^-$ was determined based on the molar extinction coefficient at 292 nm (350 M$^{-1}$ cm$^{-1}$). Then, a OCl$^-$ stock solution in 0.1 M NaOH aq. was prepared.

(d) Generation of •O$_2^-$

Superoxide (•O$_2^-$) was added as solid KO$_2$.

(e) 1O$_2$

A solution of NaMoO$_4$ was added to a solution of H$_2$O$_2$ in 0.1 M sodium phosphate buffer at pH 7.4 as a cosolvent at room temperature.

Determination of the detection limit

The detection limit was calculated based on the method used in the previous literature7. The fluorescence emission spectrum of PTZ-Cy2 was measured by three times and the standard deviation of blank measurement was achieved. The fluorescence intensity at 595 nm was plotted as a concentration of NaClO. The detection limit was calculated with the following equation:
Detection limit = $3\sigma/k$ \hspace{1cm} (1)

Where σ is the standard deviation of blank measurement, k is the slope between the fluorescence intensity versus hROS concentration.

Live cell incubation

HeLa cells were cultured in DMEM (Invitrogen) supplemented with 10% FCS (Invitrogen). One day before imaging cells were seeded into 24-well flatbottomed plates. The next day, the cells were incubated with 8.0 μM dye for 40 min at 37 °C under 5% CO₂ and washed with phosphate-buffered saline (PBS) three times.

Hela cells pre-treated with PMA (2 ng mL⁻¹) for 40 min and then incubated with PTZ-Cy2 (8 μM) plus MitoTracker Deep Red FM (1 μM) for 30 min at 37 °C. The cells were washed with PBS buffer and the fluorescence images were acquired.

Fluorescence imaging

Fluorescence imaging in cells were obtained with spectral confocal multiphoton microscopes (Olympus FV1000 confocal laser scanning microscope).

Photostability

PTZ-Cy2, OPTZ-Cy2, OPTA were dissolved in DMSO-water (5:5 v) at a concentration of 10.0 μM, respectively. The solutions were irradiated under a 500 W iodine tungsten lamp for 2 h at a distance of 250 mm away. An aqueous solution of sodium nitrite (50.0 g/L) was placed between the samples and the lamp as a heat filter. The photostabilities were expressed in the terms of remaining absorption (%) calculated from the changes of absorbance at the absorption maximum before and after irradiation by iodine tungsten lamp.
Table S1 Spectral data of dyes.

<table>
<thead>
<tr>
<th>Dyes</th>
<th>Solvents</th>
<th>λ<sub>abs</sub> (nm)</th>
<th>λ<sub>em</sub> (nm)</th>
<th>ε×10<sup>4</sup></th>
<th>Φ<sub>f</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>PTZ-Cy2</td>
<td>DMSO</td>
<td>384/583</td>
<td>485</td>
<td>2.96</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>412/627</td>
<td>500</td>
<td>3.29</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>392/595</td>
<td>480</td>
<td>3.32</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>H<sub>2</sub>O</td>
<td>375/550</td>
<td>475</td>
<td>2.62</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>390/593</td>
<td>478</td>
<td>3.43</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>383/577</td>
<td>478</td>
<td>2.92</td>
<td>0.0006</td>
</tr>
<tr>
<td>OPTZ-Cy2</td>
<td>DMSO</td>
<td>340/485</td>
<td>486/622</td>
<td>6.65</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>352/524</td>
<td>498/624</td>
<td>5.87</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>342/486</td>
<td>479/605</td>
<td>5.43</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>H<sub>2</sub>O</td>
<td>343/478</td>
<td>479/595</td>
<td>5.23</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>339/477</td>
<td>480/602</td>
<td>4.65</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>346/480</td>
<td>475/603</td>
<td>5.12</td>
<td>0.041</td>
</tr>
<tr>
<td>OPTA</td>
<td>DMSO</td>
<td>346</td>
<td>475</td>
<td>2.0</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>DCM</td>
<td>343</td>
<td>454</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>342</td>
<td>471</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>H<sub>2</sub>O</td>
<td>348</td>
<td>468</td>
<td>2.86</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>340</td>
<td>473</td>
<td>1.76</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>340</td>
<td>461</td>
<td>1.95</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Figure S1. The absorption (left) and emission (right) spectra of dye PTZ-Cy2 in water. λ_{ex} = 345 nm.

Figure S2. The absorption (left) and emission (right) spectra of dye OPTZ-Cy2 in water. λ_{ex} = 405 nm.
Figure S3. The absorption (left) and emission (right) spectra of dye OPTA in water. $\lambda_{ex} = 405$ nm.

Figure S4 a) Changes in the fluorescence spectrum of PTZ-Cy2 (10 μM) upon addition of NaClO (0-60 μM). Each spectrum was recorded after 5 min in water. b) Changes in the fluorescence spectrum of PTZ-Cy2 (10 μM) upon addition of \cdotOH (0-30μM). Each spectrum was recorded after 3 min in water. $\lambda_{ex} = 340$ nm.

Figure S5 The fluorescence changes at 595 nm, upon addition of lower concentrations of NaClO at 1–10 μM. Excitation: 450 nm.
Figure S6
a) Plot of the absorption intensity ratios at 470 nm and 550 nm of PTZ-Cy2 (10 μM) upon addition of NaClO (0–30 μM). $\lambda_{ex} = 340$ nm. b) Fluorescence intensity at 470 nm of PTZ-Cy2 (10 μM) upon addition of NaClO (0–30 μM). Conditions: each spectrum was recorded after 5 min in water. $\lambda_{ex} = 450$ nm.

Figure S7
a) Plot of the absorption intensity ratios at 470 nm and 550 nm of PTZ-Cy2 (10 μM) upon addition of •OH (0–10 μM). b) Fluorescence intensity at 470 nm of PTZ-Cy2 (10 μM) upon addition of •OH (0–12 μM). $\lambda_{ex} = 340$ nm. Conditions: each spectrum was recorded after 3 min in water. $\lambda_{ex} = 450$ nm.

Figure S8.
a) Time dependent fluorescence intensity changes of PTZ-Cy2 (10 μM) at 595 nm in the presence of 50 equiv •OH in water (180min). b) Time dependent fluorescence intensity changes of PTZ-Cy2 (5 μM) at 595 nm in the presence of 20 equiv NaClO in water (200min), $\lambda_{ex} = 340$ nm.
Figure S9. a) Changes in the fluorescence emission spectrum of PTZ-Cy2 (10 μM) with increases of NaClO concentration (0-30 μM) at 595 nm in water. b) Changes in the fluorescence emission spectrum of PTZ-Cy2 (10 μM) with increases of the •OH concentration (0-10 μM) at 595 nm in water, \(\lambda_{ex} = 450 \) nm.

Figure S10. Influence of pH on fluorescence for PTZ-Cy2 (20 μM) over the range pH 3–8. \(\lambda_{ex} = 340 \) nm.

Figure S11. a) Photo-fading of dyes (PTZ-Cy2, OPTZ-Cy2, OPTA) in solvent mixture with the ratio of DMSO-water 5:5 v/v with radiation by a 500 W iodine-tungsten lamp. PTZ-Cy2: \(\lambda_{abs} = 550 \) nm, OPTZ-Cy2: \(\lambda_{abs} = 470 \) nm, OPTA: \(\lambda_{abs} = 350 \) nm. b) Time-profile of the emission intensities of compound PTE-Cy in water at room temperature for 72 h. The fluorescent data were collected at 595 nm.
Figure S12. PTZ-Cy2 (20 μM) was loaded into HeLa cells for 30 min. a) Green emission of the PTZ-Cy2 (470 ± 20) nm; b) red emission of the PTZ-Cy2 (590 ± 20) nm, c) the green-red merged image with bright-field image. \(\lambda_{ex} = 405 \) nm.

Figure S13. PTZ-Cy2 (20 μM) was loaded into HeLa cells for 1.5 hours. a) Green emission of the PTZ-Cy2 (470 ± 20) nm; b) red emission of the PTZ-Cy2 (590 ± 20) nm, c) the green-red merged image with bright-field image. \(\lambda_{ex} = 405 \) nm.

Figure S14. Hela cells pre-treated with NaClO (100 μM) for 40 min and then incubated with PTZ-Cy2 (8 μM) for 30 min. a) Green emission of the PTZ-Cy2 (470 ± 20) nm. b) Red emission of the PTZ-Cy2 (590 ± 20) nm. (c) The green-red merged image with bright-field image. \(\lambda_{ex} = 405 \) nm.
Figure S15. Hela cells pre-treated with PTZ-Cy2 (8 μM) for 30 min and then incubated with NaClO (100 μM) for 30 min. (a) Green emission of the PTZ-Cy2 (470 ± 20) nm. (b) Red emission of the PTZ-Cy2 (590 ± 20) nm. (c) The green-red merged image with bright-field image. λ_exc = 405 nm.

Figure S16. HPLC chromatograms of probe PTZ-Cy2, a) after reaction with NaOCl for 10 min, b) after reaction with •OH for 10 min.

In vitro testing: two fluorescent substances, OPTZ-Cy2 and OPTA, were generated when NaClO and were added slowly to the PTZ-Cy2 solution. To confirm the formation of these substances, the partial MS spectra of the reaction of PTZ-Cy2 with NaClO and •OH are shown in Fig S11.
Figure S17. MS monitoring oxidation of the hROS with PTZ-Cy2 process.

References

The 1H-NMR and 13C-NMR spectra of the dyes
Figure S18. The 1H-NMR and 13C-NMR spectra of PTZ-Cy2 in DMSO.

Figure S19. The 1H-NMR spectra of OPTZ-Cy2 in DMSO.
Figure S20. The 1H-NMR spectra of OPTA in DMSO.