Insights into Electrochemiluminescent enhancement through electrode surface modification.

Emmet J. O’Reilly, Tia E. Keyes, Robert J. Forster* and Lynn Dennany*

†Centre for Forensic Science, Department of Pure & Applied Chemistry, University of Strathclyde, Royal College, 204 George Street, Glasgow, G1 1XW, Scotland. Fax: +141 548 2532; Tel: +141 548 4322; E-mail: lynn.dennany@strath.ac.uk

National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. Fax: +353 1 7005503; Tel: +353 1 7005943; Email: Robert.Forster@dcu.ie

Figure S1: Randles-Śevčik response for a thin film of [Ru(bpy)$_2$(PVP)$_{10}$]$^{2+}$. The supporting electrolyte was 0.1 M LiClO$_4$. $\Gamma = 7 \times 10^{-3}$ mole cm$^{-2}$. Analysis was performed at pH 6.0.
Figure S2: Typical photoluminescence (blue line) and ECL spectrum (red line) of a [Ru(bpy)$_2$(PVP)$_{10}$]$^{2+}$ film in contact with a solution containing 0.1 M H$_2$SO$_4$ and 0.5 mM C$_2$O$_4^{2-}$. An excitation wavelength of 355 nm was utilised.