A Novel Colorimetric Potassium Sensor Based on the Substitution of Lead from G-Quadruplex

Huijiao Suna, Xiaohong Lia*, Yunchao Lia, Louzhen Fana, Heinz-Bernhard Kraatzb*

aCollege of Chemistry, Beijing Normal University, Beijing, China, 100875

bDepartment of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.

Supplementary figures and discussion

To confirm almost all hairpin DNA 1 transforms to Na+-stabilized G-quadruplex, the properties of denatured hairpin DNA 1 are tested by CD and UV-Vis measurements and compared with that of hairpin DNA. The results are shown in Fig. S1. It is observed that similar CD spectra and UV-Vis absorption spectra are obtained for hairpin DNA 1 and denatured hairpin DNA 1, which demonstrates almost all hairpin DNA 1 transforms to Na+-stabilized G-quadruplex in the presence of 140 mM Na+.

Fig. S1. Properties of hairpin DNA 1 and denatured hairpin DNA 1 in 20 mM Tris-ClO\textsubscript{4} buffer (pH = 7.4) containing 140 mM Na+: (1) hairpin DNA 1; (2) denatured hairpin DNA 1. (a) CD spectra; (b) UV-vis absorption spectra of 1 µM hemin in the absence and presence of hairpin DNA 1; (c) UV-Vis absorption spectra of the peroxidation product (ABTS•−) at 5 min of the ABTS–H\textsubscript{2}O\textsubscript{2} reaction in the presence of 0.1 µM hemin.

In the presence of 140 mM Na+ (2 h), the hairpin DNA 1 transforming to Na+-stabilized G-quadruplex as illustrated in Fig. S2. In comparison with Na+, K+ has a higher efficiency with regard to stabilizing G-quadruplex due to the K+-stabilized G-quraduplexes more compact than
that Na\(^+\)-stabilized ones.\(^1\) Thus, Na\(^+\)-stabilized G-quadruplex converts to K\(^+\)-stabilized one upon the addition of K\(^+\). Fig. S2 depicts the conformational switches.

![Fig. S2. Schematic of DNA conformational switches and the formed G-quadruplex DNAzyme functions](image)

Fig. S2. Schematic of DNA conformational switches and the formed G-quadruplex DNAzyme functions.

![Fig. S3. CD spectra of 4 μM hairpin DNA 1 in 20 mM Tris-ClO4 buffer (pH = 7.4): (1) adding +140 mM Na\(^+\) for 2 h; (2) adding 10 mM K\(^+\) to (1) for 2 h; (3) adding 10 μM Pb\(^{2+}\) to (1) for 2h, then adding 10 mM K\(^+\) for 2h.](image)
Fig. S4. UV-vis absorption spectra of 1 µM hemin in 20 mM Tris-ClO₄ buffer (pH = 7.4) in the absence and presence of (1) 1 µM Hairpin DNA 1 + 140 mM Na⁺; (2) 10 mM K⁺ + (1); (3) 10 µM Pb²⁺ + (1), then + 10 mM K⁺.

To test the irreversibility of the process of K⁺ substituting Pb²⁺ to form K⁺-stabilized G-quadruplex, we record the UV-Vis absorption spectra of Na⁺-stabilized G-quadruplex with sequentially adding K⁺ and Pb²⁺ at 2 h intervals to catalyze ABTS–H₂O₂ reaction system. The result is shown in Fig. S5.

Fig. S5. UV-Vis absorption spectra of the peroxidation product (ABTS•⁻) at 5 min of the ABTS–H₂O₂ reaction in Tris-ClO₄ buffer (pH = 7.4) containing 0.1 µM hemin: (1) 0.1 µM hairpin DNA 1 + 140 mM Na⁺; (2) 10 mM K⁺ + (1); (3) 100 nM Pb²⁺ + (2); (4) 1 µM Pb²⁺ + (2); (5) 10 µM Pb²⁺ + (2).
To determine if K$^+$ substituting Pb$^{2+}$ to form K$^+$-stabilized G-quadruplex is also happened for other G-rich aptamers, we perform the control experiments by UV-Vis measurements with only hairpin DNA 1 instead. The selected aptamers with detailed base sequences are shown in Table S1. As shown in Fig. S6, in the presence of 140 mM Na$^+$ and 0.1 µM selected aptamer, weak catalytic activity in ABTS-H$_2$O$_2$ and hemin system is observed, reflected by weak absorbance of ABTS$^-$ at 420 nm. Upon addition of Pb$^{2+}$, the absorption intensity at 420 nm is decreased, which is corresponding to Na$^+$ stabilized G-quadruplex transforming to Pb$^{2+}$-stabilized one. After the next addition of K$^+$, nearly no change is observed in absorption intensity. Therefore, we conclude that the processes of K$^+$ substituting Pb$^{2+}$ do not happen for these selected G-rich aptamers, which is consistent with the reported assays.1-3

Table S1 The applied DNA sequence (the underlined are complementary pairs) in control experiments

<table>
<thead>
<tr>
<th></th>
<th>Applied DNA sequence (the underlined are complementary pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T30695</td>
<td>5$'$-GGGTGGGTGGGTGGGT-3$'$</td>
</tr>
<tr>
<td>PS2.M</td>
<td>5$'$-GTGGGTAGGGCGGGTTGG-3$'$</td>
</tr>
<tr>
<td>Hairpin DNA 7</td>
<td>5$'$-GTGGGTAGGGCGGGTTGGACCCAC-3$'$</td>
</tr>
<tr>
<td>PW17</td>
<td>5$'$-GGGTAGGGCGGGTTGGG-3$'$</td>
</tr>
<tr>
<td>Hairpin DNA 8</td>
<td>5$'$-AAGGGTAGGGCGGGTTGGACCCTT-3$'$</td>
</tr>
<tr>
<td>Hum21</td>
<td>5$'$-GGGTAGGGTTAGGGTTAGGG-3$'$</td>
</tr>
<tr>
<td>Hairpin DNA 9</td>
<td>5$'$-AAGGGTAGGGTTAGGGTTAGGGACCCTT-3$'$</td>
</tr>
</tbody>
</table>

![Absorption spectrum](https://example.com/absorption_spectrum.png)
Fig. S6. UV-Vis absorption spectra of the peroxidation product (ABTS\(^{\cdot}\)) at 5 min of the ABTS–H\(_2\)O\(_2\) reaction in Tris-ClO\(_4\) buffer (pH = 7.4) containing 0.1 µM hemin and 0.1 µM G-rich aptamer: (a) T30695, (b) PS2.M; (c) hairpin DNA 7; (d) PW17; (e) hairpin DNA 8; (f) Hum21; (g) hairpin DNA 9. (1) in the presence of 140 mM Na\(^{+}\), (2) adding 10 µM Pb\(^{2+}\) to (1), (3) adding 10 mM K\(^{+}\) to (2).
Fig. S7. UV-Vis absorption spectra of the peroxidation product (ABTS\(^{\cdot+}\)) at 5 min of the ABTS–H\(_2\)O\(_2\) reaction in Tris-ClO\(_4\) buffer (pH = 7.4) containing 0.1 µM hemin, 140 mM Na\(^+\) and 0.1 µM (a) hairpin DNA 2; (b) hairpin DNA 3; (c) hairpin DNA 4; (d) hairpin DNA 5; (e) hairpin DNA 6: (1) adding 10 µM Pb\(^{2+}\), (2) adding 10 mM K\(^+\) to (1).

To confirm Na\(^+\)-stabilized G-quadruplex convert to Pb\(^{2+}\)-stabilized one completely, we record the UV-Vis absorption spectra in 0.1 µM Na\(^+\)-stabilized G-quadruplex after the addition of different concentrations of Pb\(^{2+}\) in the ABTS–H\(_2\)O\(_2\) system, and the absorbance at 420 nm is
collected, respectively. The relationship of absorbance intensity at 420 nm and the concentrations of Pb$^{2+}$ is shown in Fig. S8. We can observe that the absorbance at 420 nm gradually decreases as the concentration of Pb$^{2+}$ increases from 10^{-9} M to 10^{-6} M and then remains unchanged when the concentration increases to 10 µM. Thus, 10 µM Pb$^{2+}$ is sufficient for transforming Na$^+$-stabilized G-quadruplex to Pb$^{2+}$-stabilized one.

![UV-vis absorption spectra](image)

Fig. S8. UV-vis absorption spectra for utilizing 0.1 µM DNAzyme to analyze different concentrations of Pb$^{2+}$: 0 nM (curve a), 10^{-9} M (curve b), 10^{-8} M (curve c), 10^{-7} M (curve d), 10^{-6} M (curve e), 10^{-5} M (curve f), 5×10^{-4} M (curve g), 10^{-4} M (curve h).

References

