Supporting Information

A Real-Time Colorimetric and Ratiometric Fluorescent Probe for Sulfite

Ming-Yu Wu, Ting He, Kun Li*, Ming-Bo Wu, Zheng Huang and Xiao-Qi Yu*

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China Fax: (86)-28-85415886 ; Tel: (86)-28-85415886; E-mail: xqyu@scu.edu.cn; kli@scu.edu.cn.

Content:
1. Quantum Yields..S2
2. Detection limit..S2-S3
3. The liner relationship of the fluorescent signal ratio to the concentration of sulfite......S3
4. The fluorescent emission spectrum of probe 1 with \(S_2O_4^{2-}\) and \(S_2O_5^{2-}\)......................S3
5. \(^1\)H NMR and \(^{13}\)C NMR spectrums ..S4-S12
6. MS...S13-S16
7. \(^1\)H-\(^1\)H COSY spectrums of probe 1 and probe 2.................................S17-S18

1. Quantum Yields.
Quantum yields were determined using fluorescein as a standard according to the published method. The quantum yield was calculated according to the equation: \(\Phi_{\text{sample}} = \Phi_{\text{standard}} \times \left(\frac{I_{\text{sample}}}{I_{\text{standard}}} \right) \times \left(\frac{A_{\text{sample}}}{A_{\text{standard}}} \right) \); where \(\Phi \) is the quantum yield, \(\Phi_{\text{standard}} = 0.85 \) in 0.1 M NaOH; \(I_{\text{sample}} \) and \(I_{\text{standard}} \) are the integrated fluorescence intensities of the sample and the standard, \(A_{\text{sample}} \) and \(A_{\text{standard}} \) are the optical densities, at the excitation wavelength, of the sample and the standard, respectively.

Quantum yield of Probe 1: \(\Phi = 0.028 \). Quantum yield of Probe 2: \(\Phi = 0.089 \). After the complete reaction with sulfite, the Quantum yield of Probe 1: \(\Phi = 0.006 \).

2. Detection limit.
The detection limit was calculated based on the fluorescence titration. Probe 1 was employed at 10 \(\mu \)M and the slit was adjusted to 5 nm/5 nm. To determine the S/N ratio, the emission intensity of Probe 1 without \(\text{Na}_2\text{SO}_3 \) was measured by 10 times and the standard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and the \(\text{Na}_2\text{S} \) concentration could be obtained in the 0 – 200 \(\mu \)M (\(R = 0.997 \)), as shown in Fig. S1. The detection limit is then calculated with the equation: detection limit = \(3\sigma_b \)/m, where \(\sigma_b \) is the standard deviation of blank measurements, \(m \) is the slope between intensity versus sample concentration. The detection limit was measured to be 58 \(\mu \)M at S/N = 3 (signal-to-noise ratio of 3:1).

3. The linear relationship of the fluorescent signal ratio to the concentration of sulfite

Fig. S1
A) Fluorescence response of Probe 1 (10 \(\mu \)M) to \(\text{SO}_3^{2-} \) (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 200\(\mu \)M, 0-20 eq) (\(\lambda_{\text{ex}} = 446 \) nm. Slit: 5 nm/5 nm, \(\lambda_{\text{scan}} = 460 \) – 700 nm) in DMF:buffer = 2:8.
B) Fluorescence intensity ratio at 480 nm and 578 nm (\(I_{480}/I_{578} \)) of Probe 1 (10 \(\mu \)M) upon addition of \(\text{SO}_3^{2-} \) (0–200 \(\mu \)M, 0-20 eq) (\(\lambda_{\text{ex}} = 446 \) nm. Slit: 5 nm/5 nm) in DMF:buffer = 2:8.
Fig. S2 Fluorescence intensity ratio at 501 nm and 625 nm (I_{501}/I_{625}) of Probe 2 (10 µM) upon addition of SO_3^{2-} (0–2000 µM, 0–200 eq) ($\lambda_{ex} = 468$ nm, Slit: 3 nm/3 nm) in DMF: buffer = 5:5.

4. The fluorescent emission spectrum of probe 1 with $S_2O_4^{2-}$ and $S_2O_5^{2-}$
1H NMR and 13C NMR spectrums.
ESI-MS and HRMS
1H-1H COSY spectrums of probe 1 and probe 2