Supplementary data

Novel pyrazoline-based selective fluorescent sensor for detecting reduced glutathione and its application in cells

Sheng-Qing Wang, Qing-Hua Wu, Hao-Yan Wang, Xiao-Xin Zheng, Shi-Li Shen, Yan-Ru Zhang, Bao-Xiang Zhao and Jun-Ying Miao

Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China

Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P.R. China

Table of Contents

1. Fig. S-1 Fluorescence spectra of probe 3 (10 µM) and probe 3 + Cys (100 M) in different ratios of CH3CN/H2O solution at pH 7.4 (10 mM PBS buffer) ..........................3

2. Fig. S-2 The 1H NMR spectra of probe 3 (in DMSO-d6) in the presence of different concentrations of Cys and the ratio of Cys to 3 is 0, 0.5, 1.0 and 2.0 respectively. ........3

3. Fig. S-3 Fluorescence spectra of probe 3 (10 µM) in a buffer solution (10 mM PBS

* Corresponding authors. Tel.: +86 531 88366425; fax: +86 531 88564464;
e-mail addresses: bxzhao@sdu.edu.cn and miaojy@sdu.edu.cn
buffer, pH 7.4) after the addition of Cys, GSH, mercaptoacetic acid, (each 100 µM) and Cys, GSH, mercaptoacetic acid with N-ethylmaleimide, (1 mM) for 12 h. 4

4. Fig. S-4 Photographs of the tested samples after addition of amino acid, K⁺, Ca²⁺, Na⁺, Mg²⁺, Fe³⁺ and Zn²⁺ taken by irradiating the samples with a UV lamp at 365 nm. 4

5. Fig. S-5 Fluorescence responses of 3 (10 µM) to various analytes. Red bars display fluorescence intensity of the products of 3 (10 µM) reacted with Cys (100 µM) in the presence of other amino acids and metal ions (100 µM). The black bars display the fluorescence intensities of the products of 3 (10 µM) reacted with GSH (100 µM) in the presence of other amino acids and metal ions (100 µM); blue bars display the fluorescence intensities of 3 (10 µM) in the presence of different amino acids and metal ions (100 µM), respectively. 5

6. Fig. S-6 Fluorescence spectra (10 µM) of probe 3 recorded upon addition of Cys (0-600 equiv.) in a buffer solution (10 mM PBS buffer, pH 7.4). The individual spectra were recorded after incubation of probe 3 with Cys for 24 h. Excitation wavelength was 370 nm (slit = 15.0/2.5). Inset: Linear regression equation of probe 3 (10 µM) upon addition of Cys (2-18 equiv.), in CH₃CN/H₂O (3:7, v/v), R = 0.99805 (I₄₆₄). 5

7. Fig. S-7 Time-dependent changes in the fluorescence intensity (I₄₆₄) of probe 3 (10 µM) observed upon addition of Cys (100 µM) in CH₃CN/H₂O (3:7, v/v). All experiments were performed at room temperature. 6

8. Fig. S-8 Fluorescence intensity (464 nm) of free probe 3 (10 µM) and probe 3 + 10 equiv. of GSH in a mixture of CH₃CN/H₂O (3:7, v/v) with different pH conditions. 6

9. Fig. S-9 Fluorescence intensity (464 nm) of free probe 3 (10 µM) and probe 3 + 10 equiv of Cys in a mixture of CH₃CN/H₂O (3:7, v/v) with different pH conditions. 7
**Fig. S-1** Fluorescence spectra of probe 3 (10 µM) and probe 3 + Cys (100 M) in different ratios of CH$_3$CN/H$_2$O solution at pH 7.4 (10 mM PBS buffer)

**Fig. S-2** The $^1$H NMR spectra of probe 3 (in DMSO-$d_6$) in the presence of different concentrations of Cys and the ratio of Cys to 3 is 0, 0.5, 1.0 and 2.0 respectively.
Fig. S-3 Fluorescence spectra of probe 3 (10 µM) in a buffer solution (10 mM PBS buffer, pH 7.4) after the addition of Cys, GSH, mercaptoacetic acid, (each 100 µM) and Cys, GSH, mercaptoacetic acid with N-ethylmaleimide, (1 mM) for 12 h.

Fig. S-4 Photographs of the tested samples after addition of amino acid, K⁺, Ca²⁺, Na⁺, Mg²⁺, Fe³⁺ and Zn²⁺ taken by irradiating the samples with a UV lamp at 365 nm.
Fig. S-5 Fluorescence responses of 3 (10 µM) to various analytes. Red bars display fluorescence intensity of the products of 3 (10 µM) reacted with Cys (100 µM) in the presence of other amino acids and metal ions (100 µM). The black bars display the fluorescence intensities of the products of 3 (10 µM) reacted with GSH (100 µM) in the presence of other amino acids and metal ions (100 µM); blue bars display the fluorescence intensities of 3 (10 µM) in the presence of different amino acids and metal ions (100 µM), respectively.

Fig. S-6 Fluorescence spectra (10 µM) of probe 3 recorded upon addition of Cys (0-600 equiv.) in a buffer solution (10 mM PBS buffer, pH 7.4). The individual spectra were recorded after incubation of probe 3 with Cys for 24 h. Excitation wavelength was 370 nm (slit = 15.0/2.5). Inset: Linear regression equation of probe 3 (10 µM) upon addition of Cys (2-18 equiv.), in CH$_3$CN/H$_2$O (3:7, v/v), $R = 0.99805$ (I$_{464}$).
**Fig. S-7** Time-dependent changes in the fluorescence intensity ($I_{464}$) of probe 3 (10 µM) observed upon addition of Cys (100 µM) in CH$_3$CN/H$_2$O (3:7, v/v). All experiments were performed at room temperature.

**Fig. S-8** Fluorescence intensity (464 nm) of free probe 3 (10 µM) and probe 3 + 10 equiv. of GSH in a mixture of CH$_3$CN/H$_2$O (3:7, v/v) with different pH conditions.
**Fig. S-9** Fluorescence intensity (464 nm) of free probe 3 (10 µM) and probe 3 + 10 equiv of Cys in a mixture of CH$_3$CN/H$_2$O (3:7, v/v) with different pH conditions.