Nanostructured Silver-Gold Bimetallic SERS Substrate for Selective Identification of Bacteria in Human Blood

Arumugam Sivanesan,*a Evelin Witkowska,a Witold Adamkiewicz,a Łukasz Dziewit,b Agnieszka Kamińska*a, and Jacek Waluk*a

a Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw, Poland

b University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096 Warsaw, Poland

* Corresponding authors.

E-mail address: asnesan@gmail.com (A.Sivanesan) Tel: +48 22 343 32 28

E-mail address: akamin@ichf.edu.pl (A. Kamińska) Tel: +48 22 343 32 28
Fig. S1A. The bar diagram (with standard error bars) of SERS intensity of the 730 cm$^{-1}$ band corresponding to *S. epidermidis* on air-exposed silver-gold bimetallic substrate.
Fig. S1B. The bar diagram (with standard error bars) of SERS intensity of the 730 cm\(^{-1}\) band corresponding to *S. epidermidis* on 5 different bimetallic SERS substrate prepared under identical conditions.
Fig. S2. SERS of *S. epidermidis* on (a) rough silver, and (b) Ag-Au bimetallic surface.
Fig. S3. SERS spectra of (a) vancomycin, (b) ceftazidime hydrate, and (c) *B. megaterium* on Ag-Au bimetallic surface.
Fig. S4. SEM images of (a) *E.coli*, (b) *S. enterica*, (c) *S. epidermidis*, and (d) *B. megaterium* on vancomycin-coated Ag-Au hybrid surface.
Fig. S5. Unprocessed SERS spectra of (a) *E. coli*, (b) *S. enterica*, (c) *S. epidermidis* and (d) *B. megaterium* on vancomycin-coated Ag-Au hybrid surface.