Supporting Information for

A novel chromo- and fluorogenic dual sensor for Mg\(^{2+}\) and Zn\(^{2+}\) with cell imaging possibilities and DFT studies†.

Rabiul Alam\(^{a}\), Tarun Mistri\(^{a}\), Atul Katarkar\(^{b}\), Keya Chaudhuri\(^{b}\), Sushil Kumar Mandal\(^{c}\), Anisur Rahman Khuda-Bukhs\(^{c}\), Kalyan K. Das\(^{a}\) and Mahammad Ali*\(^{a}\)

\(^a\)Department of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, E-mail: m.ali2062@yahoo.com,

\(^b\)Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India

\(^c\)Department of Zoology, Kalyani University, Kalyani, 741235, India

Table of contents

1. Experimental section

2. \(^1\)H NMR spectrum of DFC-8-AQ, Figure S1.

3. \(^{13}\)C-NMR of DFC-8-AQ, Figure S1a.

4. \(^1\)H NMR spectrum of DFC-8-AQ +Mg\(^{2+}\), Figure S1b.

5. \(^1\)H NMR spectrum of DFC-8-AQ + Zn\(^{2+}\), Figure S1c.

6. Mass spectrum of DFC-8-AQ in CH\(_3\)CN, Figure S2.

7. Mass spectrum of DFC-8-AQ +Mg\(^{2+}\) in MeCN, Figure S2a.

8. Mass spectrum of DFC-8-AQ +Zn\(^{2+}\) in MeCN, Figure S2b.

9. Selectivity of DFC-8-AQ towards Zn\(^{2+}\) and Mg\(^{2+}\) over other biologically relevant metal ions, Figure S3.

10. Reversibility plot with EDTA Figure S4.

11. UV-vis spectra of the ligand and Zn\(^{2+}\) complex in various ratio of CH\(_3\)CN-H\(_2\)O mixture. Figure S5(a).

12. UV-vis spectra of the ligand and Mg\(^{2+}\) complex in various ratio of CH\(_3\)CN-H\(_2\)O mixture. Figure S5(b).

13. Fluorescence spectra of the ligand and Zn\(^{2+}\) complex in various ratio of CH\(_3\)CN-H\(_2\)O mixture. Figure S5(c).

14. Fluorescence spectra of the ligand and Mg\(^{2+}\) complex in various ratio of CH\(_3\)CN-H\(_2\)O mixture. Figure S5(d).

15. TD-DFT UV-Vis spectrum of [Zn(DFC-8-AQ)]\(_2\) in MeCN, Figure S6

16. TD-DFT UV-Vis spectrum of [Mg(DFC-8-AQ)(H\(_2\)O)]\(_3\) in MeCN, Figure S7.
17. UV-Vis spectra of DFC-8-AQ, [Zn(DFC-8-AQ)₂] and [Mg(DFC-8-AQ)(H₂O)₃] in MeCN-H₂O 9:1 v/v, 1 mM HEPES buffer, pH 7.2. Figure S8.

18. Chemical shifts in NMR of DFC-8-AQ, Zn²⁺ and Mg²⁺ complex. Table S1

19. LOD determination
Figure S1. 1H NMR spectrum of DFC-8-AQ in CD$_3$CN, in Bruker 300 MHz instrument.
13C NMR of the ligand DFC-8-AQ in DMSO-d_6.

S1a. 13C NMR of the ligand DFC-8-AQ in DMSO-d_6.
Figure S1b. 1H NMR spectrum of **DFC-8-AQ +Mg$^{2+}$** in CD$_3$CN, in Bruker 300 MHz instrument.
Figure S1c. 1H NMR spectrum of DFC-8-AQ $+$Zn$^{2+}$ in CD$_3$CN, in Bruker 300 MHz instrument.
Figure S2. Mass spectrum of DFC-8-AQ in MeCN.
Figure S2a. Mass spectrum of DFC-8-AQ +Mg$^{2+}$ in MeCN.
Figure S2b. Mass spectrum of DFC-8-AQ + Zn$^{2+}$ in MeCN.
Figure S3. Selectivity of DFC-8-AQ towards Mg$^{2+}$ and Zn$^{2+}$ over other biologically relevant metal ions.
Figure S4. Reversibility plot of Zn complex and Mg complex with excess EDTA.
Figure S5(a). UV-vis spectra of the ligand and Zn$^{2+}$ complex in various ratio of CH$_3$CN-H$_2$O mixture.
Figure S5(b). UV-vis spectra of the ligand and Mg^{2+} complex in various ratio of CH₃CN-H₂O mixture
Figure S5(c). Fluorescence spectra of the ligand and Zn$^{2+}$ complex in various ratio of CH$_3$CN-H$_2$O (HEPES buffer) mixture.
Figure S5(d). Fluorescence spectra of the ligand and Mg$^{2+}$ complex in various ratio of CH$_3$CN-H$_2$O (HEPES buffer) mixture
Figure S6. TD-DFT UV-Vis spectrum of [Zn(DFC-8-AQ)$_2$] in MeCN
Figure S7. TD-DFT UV-Vis spectrum of [Mg(DFC-8-AQ)(H$_2$O)$_3$] in MeCN
Figure S8. UV-Vis spectra of DFC-8-AQ, [Zn(DFC-8-AQ)_2] and [Mg(DFC-8-AQ)(H_2O)_3] in MeCN-H_2O 9:1 v/v, 1 mM HEPES buffer, pH 7.2.
Table S1. 1H-NMR chemical shifts in ppm of selected H-atoms in CD$_3$CN.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CH=O(b)</th>
<th>CH=N(c)</th>
<th>f</th>
<th>g</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFC-8-AQ</td>
<td>10.53</td>
<td>9.003</td>
<td>8.95</td>
<td>8.33</td>
<td>15.39(b)</td>
</tr>
<tr>
<td>DFC-8-AQ -Zn$^{2+}$ (1)</td>
<td>10.16</td>
<td>9.26</td>
<td>9.15</td>
<td>8.94</td>
<td>..........</td>
</tr>
<tr>
<td>DFC-8-AQ -Mg$^{2+}$ (2)</td>
<td>10.17</td>
<td>9.57</td>
<td>9.19</td>
<td>8.74</td>
<td>..........</td>
</tr>
</tbody>
</table>

19. Calculation of the detection limit (LOD):

The detection limit DL of **DFC-8-AQ** for M$^{2+}$ (M = Mg and Zn) was determined from 3σ method by following equation:

$$DL = K \times \frac{S_{b1}}{S}$$

Where $K = 2$ or 3 (we take 3 in this case); S$_{b1}$ is the standard deviation of the blank solution; S is the slope of the calibration curve obtained from Linear dynamic plot of FI vs. [M$^{2+}$].

![Figure S9a](image_url). Determination of S$_{b1}$ or the blank, DFC-8-AQ solution.
Figure S9b. Linear dynamic plot of FI at 526 nm vs. [Mg$^{2+}$] for the determination of S (slope); [DFC-8-AQ] =20 µM

$$\text{LOD (Mg}^{2+}\text{)} = \frac{(3 \times 0.011)}{1.615 \times 10^7} = 2.04 \text{ nM}$$
Figure S9c. Linear dynamic plot of FI at 539 nm vs. [Zn\(^{2+}\)] for the determination of S (slope); [DFC-8-AQ] =20 µM

\[
\text{LOD (Zn}^{2+}\text{)} = \frac{(3 \times 0.011)}{5.68 \times 10^6} = 5.81 \text{ nM}
\]