Supplementary Information for

Development and Applications of Paper-Spray Ionization-Mass Spectrometry for Continuous Sub-Microlitre Droplets Analysis

Wu Liu, Sifeng Mao, Jing Wu, and Jin-Ming Lin*

Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, PR China

*Corresponding author. Email: jmlin@mail.tsinghua.edu.cn
Fig. S1. Average volume of the droplets (V) versus Δh for capillary tubes with different lengths (L); voltage=4.5 kV, $D=350 \mu$m. No remarkable effect on the droplet volume was observed in the given range.
Fig. S2. Average volume of the droplets (V) using pure water and methanol/water solution with different proportioning as the solvent; voltage=4.5 kV, $D=350$ μm, $L=330$ mm, and $Δh=170$ mm.
Fig. S3. Analysis of droplets of Rhodamine 6G solution at the concentration of 30 ppb and a S/N ratio of 3 was achieved.
Fig. S4. (a) MS spectra of 0.02 M benzaldehyde in methanol/water (7:3, v/v). (b) Extracted ion chromatogram of ion at m/z 121 with the present platform.
Fig. S5. Mass spectrum of watermelon juice generated with conventional ESI-MS.