A quantum dot-based "off-on" fluorescent probe for biological detection of zinc ions

Hu Xu, Zhiping Wang, Yan Li, Shijian Ma, Peiyi Hu, Xinhua Zhong*

Institute of Applied Chemistry, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China

Fig. S1 ¹H NMR spectra of DPA and DPA-DTC in $[D_6]DMSO$.

Fig. S2 The solid-state FTIR spectra of DPA-DTC, P-DTC, and OAm.

Fig. S3 Wide-field TEM image of DPA-P-DTC-QDs. The insert shows the corresponding HRTEM.

Fig. S4 The PL intensity of DPA-P-DTC-QDs at different pH values in the absence of Zn^{2+} . ($\lambda_{ex} = 350 \text{ nm}$)

Fig. S5 The effect of the concentration of DPA-P-DTC-QDs on PL enhancement of QDs for Zn²⁺.

Fig. S6 Relative PL response (F/F₀) of DPA-P-DTC-QDs in the presence of (A) mixed ions including Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Co²⁺, Ni²⁺, Cd²⁺, Mn²⁺, and Pb²⁺ ions (each at 0.125 mM) except for Zn²⁺, (B) mixed ions (each at 0.125 mM, no Cu²⁺, Ag⁺, Fe²⁺, Fe³⁺, and Hg²⁺ ions) containing Zn²⁺ (16 μ M), and (C) only Zn²⁺ (16 μ M) at pH 7.5 (PBS, 10 mM).

Fig. S7 Normalized absorbance of DPA-DTC and P-DTC and normalized PL intensity of CdSe/ZnS QDs.

Fig. S8 Cyclic voltammograms of Fc/Fc⁺ (black curve), DPA-DTC in the absence of Zn^{2+} (red curve), and DPA-DTC in the presence of equimolar Zn^{2+} (blue curve) at scan rate 100 mV/s. For the red and blue curves, except for the reversible peaks of Fc/Fc⁺ redox couple there is a very broad and irreversible anodic peak in the range of 0.4–1.5 V, which can be assigned to the formation of dithiocarbamate radicals *via* oxidation and the subsequent dimerization of these radicals to thiuram disulfide (L. Marek, *Zeszyty Naukowe Politechniki Gdanskiej, Chemia*, 2003, **51**, 3–96.). This transformation should always exist in DPA-DTC containing system whether or not Zn^{2+} is present in the system. The repeated measurement gave the similar results. Thus, the equimolar Zn^{2+} addition into DPA-DTC solution only trigger the disappearance of anodic peak at 0.3 V and the occurrence of a new anodic peak at 1.7 V, which essentially reflects the energy level change of the HOMO of DPA-DTC before and after adding Zn^{2+} .

Fig. S9 The re-quenching of the recovered PL of DPA-P-DTC-QDs suspension containing Zn^{2+} (16 μ M) upon the addition of EDTA (16 μ M).

Fig. S10 The normalized UV-vis and PL spectra ($\lambda_{ex} = 350$ nm) of DPA-P-DTC-QDs in PBS (10 mM, pH 7.5).

Table S1 Fluorescence lifetime data for OAm-capped CdSe/ZnS QDs and DPA-P-DTC-QDs in the absence and presence of Zn^{2+} .

Substrate	Emission lifetimes ^a /ns		Average lifetime ^b
	$ au_1$	$ au_2$	$ au_{ m av/ns}$
OAm-capped CdSe/ZnS QDs	6.03 (51%)	24.31 (49%)	20.56
DPA-P-DTC-QDs	2.29 (77%)	8.31 (23%)	5.41
$DPA-P-DTC-QDs + Zn^{2+}$	3.19 (44%)	15.65 (56%)	13.94

^{*a*}The PL decay was analyzed using the express $F(t) = a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2)$, where τ_1 and τ_2 were the lifetimes. The values in parentheses indicate the fraction (%) of the corresponding lifetime component. ^{*b*}The average lifetime values was calculated using the expression $\tau_{av} = \sum a_i \tau_i^2 / \sum a_i \tau_i$.

Linear range	Detection limit	Detection Probes	References
0-20 µM	0.8 μM	L-cysteine-capped CdS QDs	29b
5-500 µM	2.4 µM	Azamacrocycle activated QDs	29c
10-1000 μM	0.57 μM	CdSe/ZnS core/shell QDs-zincon conjugates	29d
1.6-35 μM	1.2 μM	CdTe QDs	29e
0.3-15 μM	0.08 µM	Mn ²⁺ doped ZnS QDs	29f
0.2-5.0 mM	No report	Iminodiacetate-capped CdSe/ZnS core/shell QDs	29a
0.9-16 µM	0.7 μM	DPA-P-DTC-QDs	This work

Table S2. Comparison of detection performance of various QDs-based probes for Zn^{2+} .