Supporting Information

A highly selective and sensitive probe for colorimetric and fluorogenic detection of Cd\(^{2+}\) in aqueous media

Shyamaprosad Goswami,\(^a\) Krishnendu Aich, Sangita Das\(^a\), Avijit Kumar Das\(^a\), Abhishek Manna\(^a\) and Sandipan Halder\(^b\)

\(^a\)Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah, INDIA, 711 103, Tel. +91-33-2668 4561-3 ext. 498; Fax. +91-33-2668 2916.

e-mail spgoswamical@yahoo.com

\(^b\)Department of Chemistry, Indian Institute of Technology, Kanpur, India

CONTENTS

1. General method of UV-vis and fluorescence titration 2-3
2. Determination of detection limit ... 4
3. ESI MS spectrum of compound B ... 5
4. \(^1\)H NMR spectrum of compound B .. 6
5. \(^1\)H NMR spectrum of the receptor ... 7
6. Mass spectrum (ESI-MS) of the receptor .. 8
7. \(^{13}\)C NMR spectrum of the receptor ... 9-10
8. IR spectra of the receptor and its Cd\(^{2+}\) complexes 11
9. ESI-MS spectrum of Cd\(^{2+}\) complex of the receptor 12
10. UV-vis titration spectra of the receptor with different guest cations 13-14
10. Fluorescence titration spectra of the receptor with different guest cations 15-16
General method of UV-vis and fluorescence titration:

By UV-vis method

UV-vis spectra were recorded on a JASCO V-530 spectrophotometer using a dissolution cell of 10 mm path and the fluorescence spectra were recorded on a PTI spectrophotometer using a fluorescence cell (10 mm). For UV-vis titrations, stock solution of receptor was prepared (c = 6 x 10^{-6} ML^{-1}) in CH₃OH-H₂O (1:4 v/v) in the presence of HEPES buffer solution (pH 7.1). For fluorescence titrations, stock solution of receptor was prepared (c = 3 x 10^{-6} ML^{-1}) in CH₃OH-H₂O (1:4 v/v) in the presence of HEPES buffer solution (pH 7.1). The solution of the guest cations using their perchlorate salts in the order of 2 x 10^{-5} M were prepared in deionised water. Solutions of various concentrations containing host and increasing concentrations of cations were prepared separately. The spectra of these solutions were recorded by means of UV-vis methods. Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$\frac{1}{(A-A_0)} = \frac{1}{K(A_{max}-A_0)} [M^{x+}]^n + \frac{1}{[A_{max}-A_0]}$$

Here A_0 is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, A_{max} is absorbance in presence of added $[M^{x+}]_{max}$ and K is the association constant. The association constant (K) could be determined from the slope of the straight line of the plot of $1/(A-A_0)$ against $1/[M^{x+}]$ and is found to be 1.656×10^{-5} M.

![Figure S1: Benesi-Hildebrand plot from absorption titration data of receptor (6 µM) with Cd^{2+}.](image-url)
General procedure for drawing Job plot by UV–vis method

Stock solution of same concentration of the receptors and the guest were prepared in the order of ca. \(1.0 \times 10^{-5}\) ML\(^{-1}\) CH\(_3\)OH-H\(_2\)O (1:4, v/v). The absorbance in each case with different host–guest ratio but equal in volume was recorded. Job plots were drawn by plotting \(\Delta I X_{\text{host}}\) vs \(X_{\text{host}}\) (\(\Delta I\) = change of intensity of the absorbance spectrum during titration and \(X_{\text{host}}\) is the mole fraction of the host in each case, respectively).

By fluorescence method:

The binding constant value of Cd\(^{2+}\) with receptor has been determined from the emission intensity data following the modified Benesi–Hildebrand equation,

\[
\frac{1}{\Delta I} = \frac{1}{\Delta I_{\text{max}}} + \frac{1}{K[C]} \left(\frac{1}{\Delta I_{\text{max}}} - \frac{1}{\Delta I}\right)
\]

Here \(\Delta I = I - I_{\text{min}}\) and \(\Delta I_{\text{max}} = I_{\text{max}} - I_{\text{min}}\), where \(I_{\text{min}}, I,\) and \(I_{\text{max}}\) are the emission intensities of receptor considered in the absence of Cd\(^{2+}\), at an intermediate Cd\(^{2+}\) concentration, and at a concentration of complete saturation where \(K\) is the binding constant and \([C]\) is the Cd\(^{2+}\) concentration respectively. From the plot of \([1 / (I_{\text{min}} - I)]\) against \([C]^{-1}\) for receptor, the value of \(K\) has been determined from the slope. The association constant \((K_a)\) as determined by fluorescence titration method for the receptor with Cd\(^{2+}\) is found to be \(6.808 \times 10^5\) M\(^{-1}\) (error < 10%).

![Benesi–Hildebrand plot from fluorescence titration data of receptor (3 µM) with Cd\(^{2+}\).](image)

Figure S2: Benesi–Hildebrand plot from fluorescence titration data of receptor (3 µM) with Cd\(^{2+}\).
Determination of detection limit:

The detection limit (DL) of RQ for Cd$^{2+}$ was determined from the following equation:

$$DL = K \times \frac{Sb1}{S}$$

Where $K = 2$ or 3 (we take 3 in this case); $Sb1$ is the standard deviation of the blank solution; S is the slope of the calibration curve.

For UV-vis:

From the graph, we get slope = 43180.32, and $Sb1$ value is 0.010213

Thus using the formula we get the Detection Limit = 7.09×10^{-7} M i.e. RQ can detect Cd$^{2+}$ in this minimum concentration through UV-vis method.

For Fluorescence:

From the graph we get slope = 1.44×10^{12}, and $Sb1$ value is 94366.66

Thus using the formula we get the Detection Limit = 1.97×10^{-7} M i.e. RQ can detect Cd$^{2+}$ in this minimum concentration through fluorescence method.
ESI MS spectra of compound B:

Figure S3: ESI TOF mass spectra of the compound B.
1H NMR spectra of the compound B:

Figure S4: 1H NMR (300 MHz) spectra of compound B in CDCl$_3$.

^1\text{H} \text{NMR} \text{ spectra of the receptor:}

Figure S5: ^1\text{H} \text{NMR (300 MHz) spectra of the receptor in CDCl}_3.
ESI MS spectra of the receptor:

Figure S6: ESI TOF mass spectra of the receptor.
13C NMR spectra of the receptor:

Figure S7: 13C NMR (100 MHz) spectra of the receptor in CDCl$_3$.

Figure S8: Expansion mode of the 13C NMR spectra of the receptor in CDCl$_3$.
IR spectra of the receptor and its Cd$^{2+}$ complex:

![IR spectra graph]

Figure S9: FT IR spectra of the receptor and its complex with Cd$^{2+}$.
ESI-MS of Cd$^{2+}$ complex of the receptor:

Figure S10: ESI TOF mass spectra of the Cd$^{2+}$ complex of the receptor.
UV-vis titration spectra of the receptor with different guest cations in CH$_3$OH-HEPES buffer solution (1:4, v/v, pH= 7.1):
Fluorescence emission spectra of the receptor with different guest cations in CH$_3$OH-HEPES buffer solution (1:4, v/v, pH = 7.1):

- **Co$^{2+}$**
- **Cr$^{3+}$**
- **Cu$^{2+}$**
- **Fe$^{3+}$**
- **Hg$^{2+}$**
- **Mn$^{2+}$**