Simultaneous Study of Subcellular Exocytosis with Individually Addressable Multiple Microelectrodes

Jun Wang, a,b and Andrew G. Ewing a,b,*

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x

www.rsc.org/

Fig. S1. A) Optical photo of the whole device with nine MEAs and nine socket connectors and one PDMS well for cell culture (scale bar: 10 mm); B,) Cyclic voltammetry for electrochemical characterization of 4 µm, 3 µm and 2 µm microelectrodes in three kinds of MEAs (scan rate: 20 mV/s) obtained in 1 mM FcMeOH in PBS buffer).
Fig. S2. Three 1-s time periods showing exocytotic responses at MEAs at a PC12 cell after potassium stimulation. The noise level is in the 1-2 pA range.

Fig. S3. Frequency histograms for the spike half-width ($t_{1/2}$), spike peak current (I_p), and number of released dopamine molecules for different electrodes, E1-E3, at a 4 by 4 MEA. The data are processed from the traces presented in Figure 2C.
Fig. S4. Frequency histograms for the spike half-width ($t_{1/2}$), spike peak current (I_p), and number of released dopamine molecules for different electrodes, E1-E4, in a 5 by 5 MEA. The data are processed from the traces presented in Figure 3C.

Fig. S5. Frequency histograms for the spike half-width ($t_{1/2}$), spike peak current (I_p), and number of released dopamine molecules for different electrodes, E5-E8, in a 4 by 4 MEA. The data are processed from the traces presented in Figure 4D.
Notes and references

* Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden
*bDepartment of Chemical and Biological Engineering, Chalmers University of Technology, Sweden