Supplementary Information

Metal-organic frameworks and β-cyclodextrin based composite electrode for simultaneous quantification of guanine and adenine in a lab-on-valve manifold

Yang Wang*, Huanhuan Chen, Yichun Wu, Huali Ge, Guiqin Ye, Xiaoya Hu*

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

*Corresponding author. Tel./fax: +86 514 87975587. E-mail addresses: wangyzu@126.com (Y. Wang), xyhu@yzu.edu.cn (X. Hu).
Fig. S1: Cyclic voltammograms of guanine and adenine in phosphate buffer solution at Cu₃(BTC)₂/β-CD/GCE at scan rates of 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, and 240 mV s⁻¹. Insert: Dependence of oxidation peak currents on scan rates.
Fig. S2: Effect of pH on the current responses of guanine and adenine.
Fig. S3: Oxidation mechanism of guanine and adenine.
Fig. S4: Effect of accumulation potential on the current responses of guanine and adenine.
Fig. S5: Effect of accumulation time on the current responses of guanine and adenine.
Fig. S6: Effect of flow rate on the current responses of guanine and adenine.