## **Electronic supplementary information**

Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system

K. Gajos, P. Petrou, A. Budkowski, K. Awsiuk, A. Bernasik, K. Misiakos, J. Rysz, I. Raptis, S. Kakabakos

M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Institute of Nuclear & Radiological Science & Technology, Energy & Safety, NCSR Demokritos, End Patriarchou Gregoriou Str., 15310 Aghia Paraskevi, Greece

*Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland Kraków, Poland* 

Institute for Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR Demokritos, End Patriarchou Gregoriou Str., 15310 Aghia Paraskevi, Greece



**Figure ESI-1.** The cross sectional analysis of topographic AFM micrographs (*cf.* Fig.2), recorded from epoxy-silanized SiO<sub>2</sub> surfaces after the successive steps of the different approaches followed for the immobilization of capture oligonucleotides in spots (*cf.* Fig.1 for used notation), and acquired from the bare SiO<sub>2</sub> substrate as the control (characterized by positive surface skewness, RMS = 0.22 nm and <h> = 0.43 nm).



**Figure ESI-2**. High resolution XPS C1s core-level surface spectra recorded after characteristic steps of the three immobilization approaches (*cf.* Fig. 1). Contributions to the C1s envelope are shown, referred to various carbon environments (see legend). Note, that the intensities of signals from carbon in carbonyl O=C (and amide O=CN) groups, that are specific for biomolecules, and of the epoxy-groups of the silane layer (non-reacted) are anti-correlated.



**Figure ESI-3.** TOF-SIMS microanalysis of streptavidin immobilized at the surface after the successive steps of deposition/reaction involved in the three immobilization approaches (see Fig.1 for the used notation). Secondary ion intensities (normalized per total ion intensity) characteristic for streptavidin ( $C_{11}H_8NO^+$  from tryptophan) determined for uniform surfaces (samples A-C, E and G-H) as well as inside (s - spot) and outside (b - background) oligonucleotide spots (samples D, F and I). Error bars are standard deviation values determined from repetitive (3-8) measurements of the same surface.

| Approach I                            |   |  | Approach II    |   |   |  | Approach III |   |   |   |
|---------------------------------------|---|--|----------------|---|---|--|--------------|---|---|---|
| •                                     | • |  | × <sup>©</sup> | 0 | ٢ |  |              | ٢ | ۲ | Ģ |
| Mean spot intensity (RFU) of 64 spots |   |  |                |   |   |  |              |   |   |   |
| 26680±1541                            |   |  | 15406±1054     |   |   |  | 6797±601     |   |   |   |

**Figure ESI-4**. Fluorescence microscopy images of the spots of fluorescently-labelled oligonucleotides on glass slides, prepared according to protocols I, II, and III and the respective mean fluorescence intensity values  $\pm$ SD obtained from 64 spots.

## Cumulative material distribution and complementary molecular composition maps within DNA spots, obtained with TOF-SIMS from 1.0 mm x 1.0 mm areas



**Figure ESI-5.** Molecular distribution of the whole material (the row 'total (-)') and composition maps of oligonucleotide (the rows 'oligo', corresponding to signal of  $PO_3^-$  and nucleotide bases fragments SUM DNA<sup>-</sup>) obtained by TOF-SIMS imaging of the oligonucleotide spots created following each one of the three immobilization protocols (columns D, F and I, respectively, *cf.* Fig. 1) on epoxy-silanized SiO<sub>2</sub> surfaces. The TOF-SIMS intensity maps of all negative ion fragments (corresponding to row 'total (-)') were used to normalize for each pixel the intensities of DNA-derived negative ions (shown after normalization as the rows 'oligo').

Cumulative material distribution and complementary molecular composition maps within DNA spots, obtained with TOF-SIMS from 0.5 mm x 0.5 mm areas



**Figure ESI-6.** Molecular distribution of the whole material (row 'total (-)') and composition maps (*cf.* Fig. 8) of oligonucleotide (rows 'oligo', corresponding to signal of ion  $PO_3^-$  and nucleotide bases fragments SUM DNA<sup>-</sup>), obtained by TOF-SIMS imaging of the DNA spots created following each one of the three immobilization protocols (columns D, F and I, respectively, *cf.* Fig. 1) on epoxy-silanized SiO<sub>2</sub> surfaces. The TOF-SIMS intensity maps of all positive ion fragments (row 'total (+)') were used to normalize for each pixel the intensities of positive fragment ions characteristic for the different molecules (shown after normalization as the rows 'oligo').



**Figure ESI-7.** Molecular distribution of the whole material (row 'total (+)') and complementary composition maps (*cf.* Fig. 9) of streptavidin (row 'Str', corresponding to signal of ion  $C_9H_8N^+$  characteristic for tryptophan), BSA (row 'BSA', corresponding to signal of ion  $C_5H_{10}N^+$  specific for lysine), epoxy-terminated silane GOPS (row 'epoxy', corresponding to signal of ion  $CH_3O^+$ ) and

silicon substrate (row 'SiO<sub>2</sub>', corresponding to signal of ion Si<sup>+</sup>), obtained by TOF-SIMS imaging of the DNA spots created following each one of the three immobilization protocols (columns D, F and I, respectively, *cf.* Fig. 1). The TOF-SIMS intensity maps of all positive ion fragments (row 'total (+)') were used to normalize for each pixel the intensities of positive fragment ions characteristic for the different molecules (shown after normalization at the rest of the rows).