Supplementary Information

Label-free electrochemical immunosensor based on ionic organic molecule and chitosan-stabilized gold nanoparticles for the detection of cardiac troponin T

Daniela Brondani,*a Jamille Valéria Piovesan,b Eduard Westphal,c Hugo Gallardo,c Rosa Amalia Fireman Dutra,d Almir Spinelli,b Iolanda Cruz Vieira*a

*a Laboratory of Biosensors, Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
*E-mail address: danielabrondani@hotmail.com (D. Brondani); iolanda.vieira@ufsc.br (I. C. Vieira). Phone: + 55 48 3721 6844; Fax: + 55 48 3721 6850.
b Group of Studies of Electrochemical and Electroanalytical Processes, Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
c Laboratory of Synthesis of Liquid Crystals, Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
d Biomedical Engineering Laboratory, Technology Center, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil.
Synthesis and characterization of ionic organic molecule I-Py

Fig. S1. IR spectrum for the ionic product I-Py in KBr.

Fig. S2. 1H NMR (400 MHz) spectrum for the ionic product I-Py in CDCl$_3$.
Fig. S3. 13C NMR (100.6 MHz) spectrum for the ionic product I-Py in CDCl$_3$.

Thermal Characterization of I-Py

Fig. S4. Thermal transitions for the compound I-Py determined by DSC using a heating/cooling rate of 10 °C min$^{-1}$ and N$_2$ flow (50 mL min$^{-1}$). The curves correspond to the first cooling and to the second heating scans.
Fig. S5. Thermogravimetric analysis (TGA) plot for the ionic product I-Py under N₂ flow (20 mL min⁻¹) with a heating rate of 10 °C min⁻¹.

Electrochemical behavior of ionic organic molecule I-Py

\[
\begin{align*}
\text{H}_2\text{C}_{10}\text{O-} & \text{N} & \text{N} & \text{N} & \text{H}_2 & \text{I} & \rightarrow \\
& & & & & & \\
+ (2\text{H}^+, 2\text{e}^-) & \rightarrow \\
- (2\text{H}^+, 2\text{e}^-) & \\
\text{H}_2\text{C}_{10}\text{O-} & \text{N} & \text{N} & \text{N} & \text{H} & \text{N} - & \text{I} \,
\end{align*}
\]

Fig. S6. Proposed chemical equation for the redox process of I-Py.

Figure S7-A shows the influence of the scan rate (ν) on the voltammetric profile for the I-Py modified electrode in phosphate buffer solution (pH 7.0, 0.1 mol L⁻¹). The scan rate was varied from 10 to 300 mV s⁻¹. The reaction is quasi-reversible because the potentials shifted with increasing scan rate. In addition, the cathodic current-iₚc anodic current-iₚa ratio deviated slightly from 1.0. The currents of both peaks changed linearly with the square root of the scan rate (Fig. S7-B). The corresponding linear regression equations are

\[
i_{\text{pa}} / \mu\text{A} = -1.09 + 0.65 \nu^{1/2} / (\text{mV s}^{-1})^{1/2} (r^2 = 0.998)
\]

and

\[
i_{\text{pc}} / \mu\text{A} = 1.47 - 0.87 \nu^{1/2} / (\text{mV s}^{-1})^{1/2} (r^2 = 0.990).
\]

These results indicate that the redox reaction of I-Py is a diffusion-controlled process. Moreover, the plot of log iₚ vs. log ν (Fig. S7-C) exhibited a slope of 0.65 for the oxidation reaction and 0.87 for the reduction reaction, clearly indicating that the current for both reactions was diffusion-controlled with a contribution from adsorption.
Fig. S7. (A) Cyclic voltammograms for I-Py sensor in 0.1 mol L⁻¹ phosphate buffer (pH 7.0), $v = 10$ a 300 mV s⁻¹; (B) plot i_p vs. $v^{1/2}$; (C) plot log i_p vs. log v.
Fig. S8. UV-vis spectra of the CTS-stabilized AuNP (A) before and (B) after addition of anti-cTnT.