SUPPLEMENTARY MATERIAL

Propofol Detection and Quantification in Human Blood: The Promise of Feedback Controlled, Closed-loop Anesthesia

Francine Kivlehana, Edward Chaumb, Ernö Lindnera

aDepartment of Biomedical Engineering, University of Memphis, Memphis, Tennessee 38152
bDepartments of Ophthalmology and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee 38152

![Figure S1: Schematic representation of the surface profiler scans over a partially membrane-coated glass cover slip (left) and the recorded surface profiles (right).](image)

Figure S1: Schematic representation of the surface profiler scans over a partially membrane-coated glass cover slip (left) and the recorded surface profiles (right).
Figure S2: CA transients recorded with a PVC membrane-coated GC sensor following the injection of 175 μL propofol standards (1.00 μM and 12.00 μM, with 5% BSA content) and HSA samples with 6.00 μM nominal propofol concentration into a continuously flowing PBS buffer solution.

The results of the standard addition measurements were calculated using the following equation:

\[c_s = \frac{c_{St} V_{St}}{\frac{i_{2corr}}{i_{1corr}} (V_s + V_{St}) - V_s} \]

Eq. S1

where \(c_s \) is the sample concentration, \(c_{St} \) is the concentration of the standard, \(V_s \) is the sample volume, \(V_{St} \) is the volume of the standard, and \(i_{1corr} \) and \(i_{2corr} \) are background current corrected current values measured in the sample before and after the addition of the standard, respectively.
Figure S3: CA response of a membrane-coated GC working electrode on the external surface of a catheter prototype to propofol injectable emulsion in PBS in combination with an external reference and counter electrodes Inset: Calibration curves constructed from the corresponding steady state current and concentration values.