Supporting information

Make Pyrophosphate Visible: The First Precipitable and Realtime Fluorescent Sensor for Pyrophosphate in HEPES buffer Medium

Contents

1. Supplementary figures

	Fig.S1Mass spectral analysis for R1-Zn(II)	2
	Fig.S2 The binding constant of R1 with Zn^{2+}	2
	Fig.S3The fluorescence response of $\mathbf{R2}$ towards Zn^{2+}	3
	Fig.S4 The fluorescence response of $\mathbf{R3}$ towards Zn^{2+}	3
	Fig.S5 The fluorescence intensity of mixing (R1-Zn2+) + PPi + (tested anions	all
together)		4
	Fig.S6 The Job's plot of R1-Zn (II) complex with PPi	4
	Fig.S7 Mass spectral analysis for R1-Zn(II)-PPi	5
	Fig.S8 The binding constant of R1-Zn(II) with PPi	5
	Fig.S9 The determination R1-Zn(II) of the detection limit (LOD) for PPi	6
	Fig.S10 Absorption spectra of during the titration R1-Zn(II) with PPi	6
2.	¹ H-NMR, ¹³ C-NMR and HRMS spectra of R1/R2/R3 and intermediates.	7

Fig. S2 The binding constant of R1 with Zn^{2+} by using the linear Benesi-Hildebrand expression (The binding constant of R1-Zn(II) with PPi by using the linear Benesi-Hildebrand equation $I_0/I-I_0=b/a-b$ {1/K[M]²⁺¹} K=A/B = 5.06 × 10^{10} M^{-2})

Fig.S3 The fluorescence response of R2 towards Zn^{2+}

Fig.S4 The fluorescence response of R3 towards Zn^{2+}

Fig.S5 The fluorescence intensity of mixing $(R1-Zn^{2+}) + PPi + (tested anions all together)$. Test anions: F⁻, SCN⁻,

H₂PO₄⁻, HCO₃⁻, Br⁻, PO₄³⁻, NO₃⁻, AcO⁻, Citrate, I⁻, N₃⁻, SO₄²⁻ (50 μM).

Fig.S6 Job's plot obtained from the fluorescent titration of R1-Zn(II) with PPi in HEPES, the total concentration is 10 μ M.

Fig.S8 The binding constant of R1-Zn(II) with PPi by using the linear Benesi-Hildebrand and expression (The binding constant of R1-2Zn²⁺ with PPi by using the linear Benesi-Hildebrand expression: $I_0/I-I_0 = b/a-b \{1/K[M]+1\}$, $K=A/B= 6.7 \times 10^5 M^{-1}$).

1/[PPi]

Fig.S9 The determination R1-Zn(II) of the detection limit (LOD) for PPi in HEPES buffer (10 mM, pH =7.4)

Fig.S10 Absorption spectra of during the titration R1-Zn(II) with PPi (0-0.35 equiv) in HEPES (10 mM, pH = 7.4)

1. ¹H-NMR, ¹³C-NMR and HRMS spectra of R1/R2/R3 and intermediates.

1.1 The HRMS of R1

2.3 The HRMS of R3+H⁺

2.4 The HRMS of R1-Zn(II)

2.5 The HRMS of R1-Zn(II)-P₂O₇⁴⁺Na⁺-2H⁺

2.6 ¹H-NMR of R1

2.7 ¹³C-NMR of R1

2.8 ¹H-NMR of R2

2.9 ¹³C-NMR of R2

2.10¹H-NMR of R3

2.11 ¹³C-NMR of R3

