Electronic supplementary information(ESI)

Highly sensitive colorimetric detection and removal of $\mathrm{Hg^{II}}$ and $\mathrm{Cu^{II}}$ in aqueous solution:From amino acids toward solid platforms

Jooyoung Park, Byunggyu In, Lok Nath Neupane, and Keun-Hyeung Lee*

Bioorganic chemistry Lab, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea

*E-mail: leekh@inha.ac.kr (K-H. Lee)

Table of Contents		Pages
	Scheme S1. Synthesis of NBD-H-PEG-PS	S2
	Figure S1. ESI-MS and HPLC spectrum of NBD-H	S3
	Figure S2. ¹ H and ¹³ C NMR of NBD-H	S4
	Figure S3. FAB-HRMS spectrum of NBD-H	S5
	Figure S4. NBD-H binding for Ag ^I	S6
	Figure S5. Job's plot of NBD-H with Hg ^{II} and Cu ^{II}	S7
	Figure S6. Determination of K _d based on UV/VIS titration	S 8
	Figure S7. Detection limit of NBD-H with Hg ^{II} and Cu ^{II}	S 9
	Figure S8. Fluorescence emission of NBD-H	S10
	Figure S9. Fluorescence titration of NBD-H with Hg ^{II} and Cu ^{II}	S11
	Figure S10. Competition of NBD-H with Hg ^{II} and Cu ^{II}	S12
	Figure S11. Removing the interference effect of Ag ^I using NaCl	S13
	Figure S12. Other anion effect of Hg ^{II}	S14
	Figure S13. pH titration of NBD-H with Hg ^{II} and Cu ^{II}	S15
	Figure S14. detection of NBD-H -PEG-PS with Cu ^{II}	S16

Scheme S1. Synthesis of NBD-H-PEG-PS

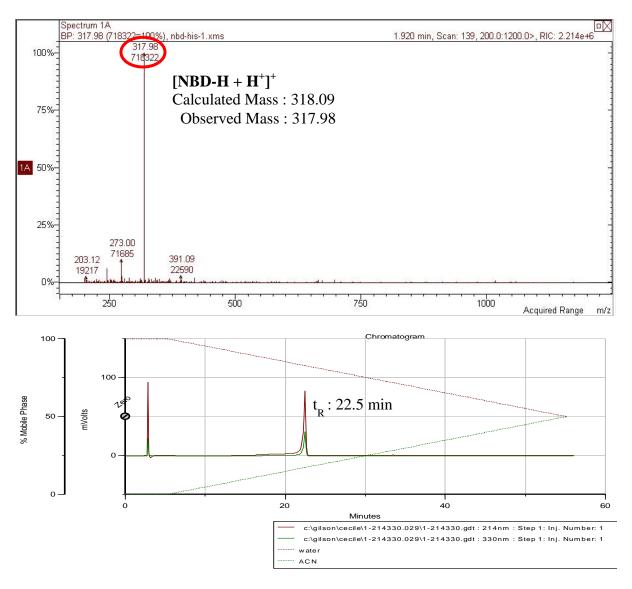
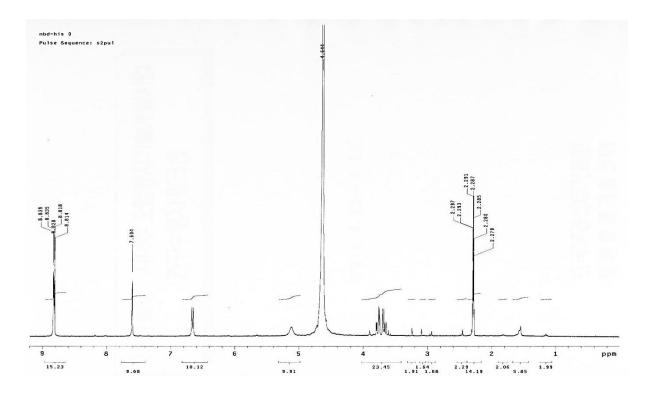
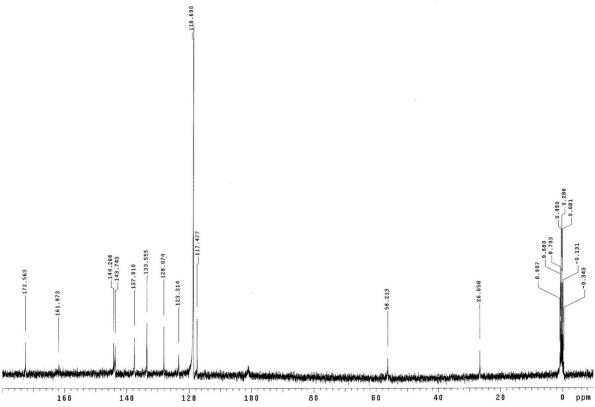
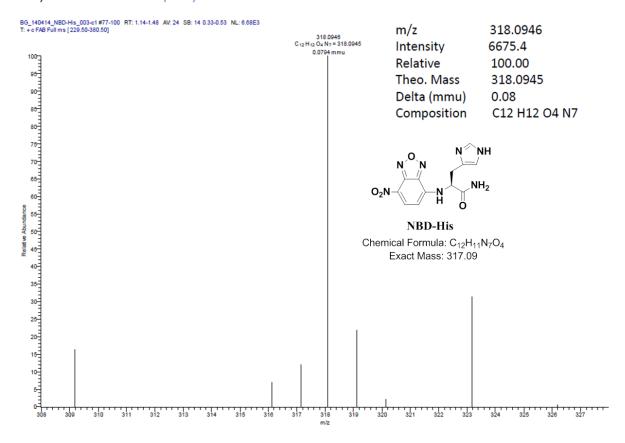
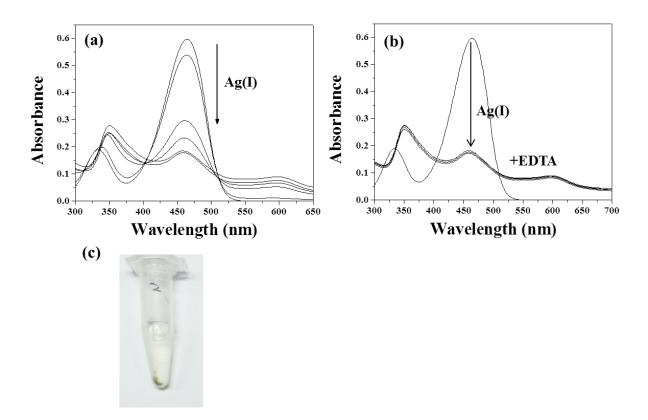
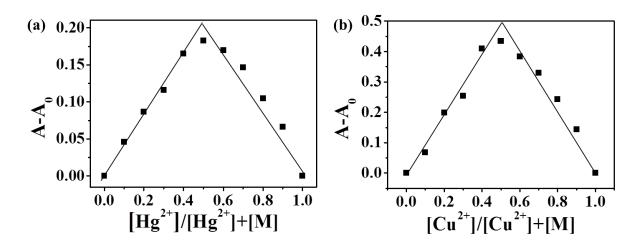
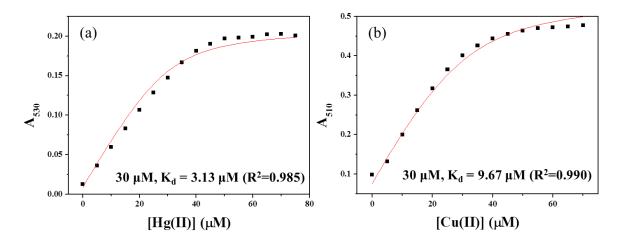




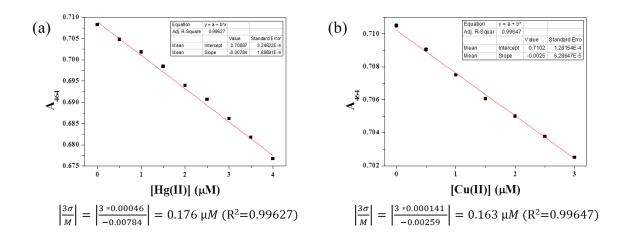
Figure S1. ESI-MS and HPLC spectrum of NBD-H

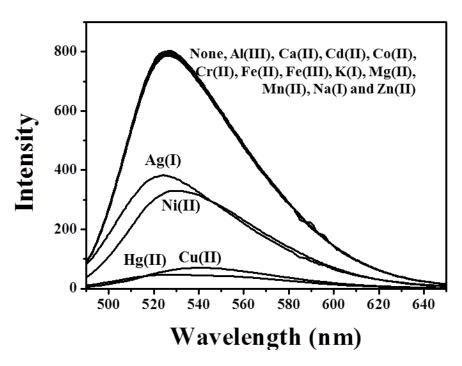
Figure S2. (a) ${}^{1}H$ NMR of **NBD-H** (15 mM) in 50% ACN-d₃/D₂O and (b) ${}^{13}C$ NMR of **NBD-H** in 50% ACN-d₃/D₂O at 25 °C.

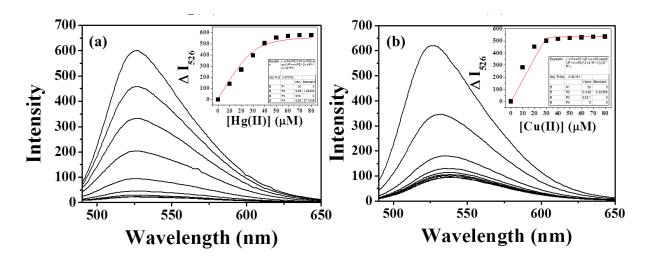
4) NBD-HIS with GLY (POS)

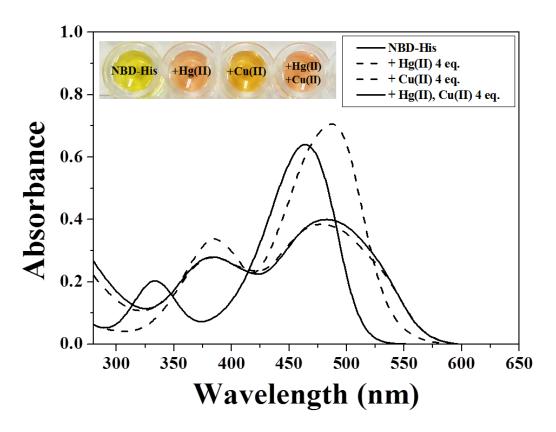




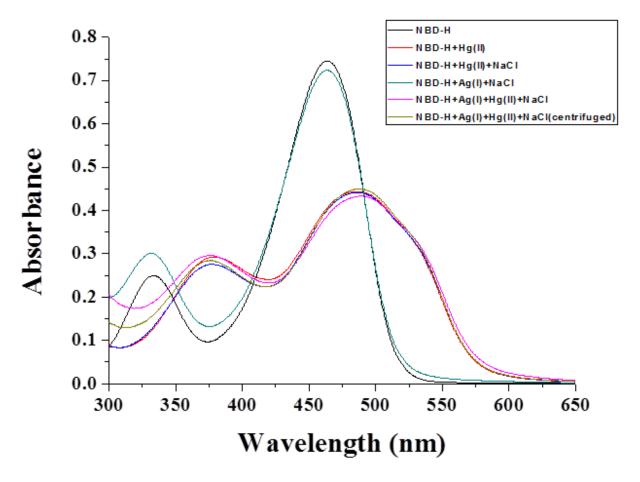

Figure S3. FAB-HRMS spectrum of NBD-H

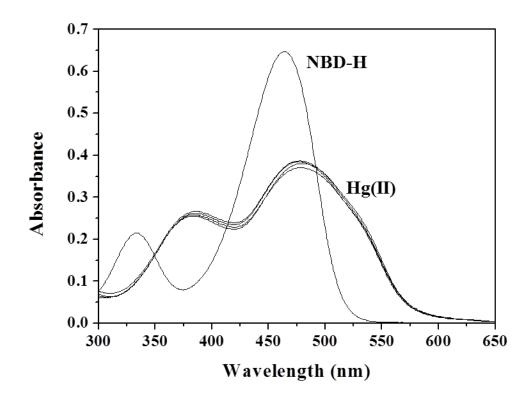

Figure S4. UV-VIS absorbance spectra of **NBD-H** (30 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN (a) with increasing concentration of Ag ^I (0, 20, 40, ..., 100 μ M) and (b) EDTA (100, 200, 300 μ M) after adding Ag ^I (100 μ M). (d) The centrifuged solution of **NBD-H** with Ag ^I.

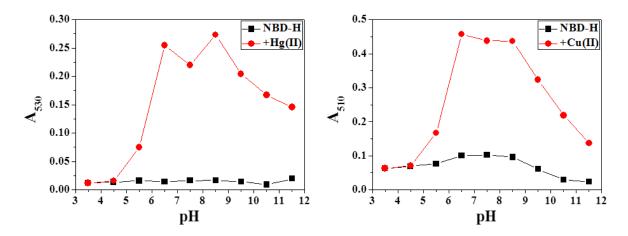

Figure S5. A Job plot for **NBD-H** (30 μ M) with (a) Hg^{II} and (b) Cu^{II} in 10mM HEPES buffer solution (pH 7.4) containing 5% ACN.


Figure S6. Absorbance titration curve of **NBD-H** (30 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN (a) with increasing concentration of Hg^{II} (0, 5, 10, 15, ..., 70, 75 μ M) and (b) Cu^{II} (0, 5, 10, 15, ..., 65, 70 μ M)


Figure S7. Detection limit of **NBD-H** (30 μ M) with (a) Hg^{II} or (b) Cu^{II} ions in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN.


Figure S8. Fluorescence emission spectra of **NBD-H** (30 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN in presence of various metal ions (60 μ M).


Figure S9. Fluorescence emission spectra of **NBD-H** (30 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN (a) with increasing concentration of Hg^{II} and (b) Cu^{II} (0, 10, ..., 80 μ M). Inset: Fluorescence titration curve of **NBD-H** (30 μ M) with increasing concentration of (a) Hg^{II} and (b) Cu^{II}


Figure S10. UV-VIS absorbance spectra of **NBD-H**(30 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN in the presence of Hg^{II} and/or Cu^{II}.

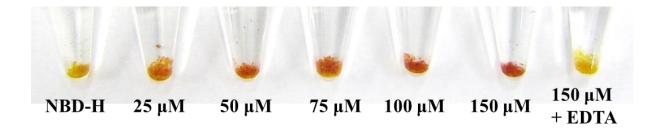

Figure S11. UV-VIS absorbance spectra of **NBD-H** (30 μ M) in 10 mM HEPES buffer solution at pH 7.4 containing 3% ACN and 1 mM NaCl in the presence of Ag^I (2 equiv.) and/or Hg^{II} (2 equiv.).

Figure S12. UV-VIS absorbance spectra of **NBD-H** (30 μ M) in 10 mM HEPES buffer solution (pH 7.4) containing 3% ACN in presence of 2 equiv. of Hg^{II} (HgCl₂, Hg(OAc)₂, Hg(NO₃)₂, and Hg(ClO₄)₂).

Figure S13. UV/VIS absorbance spectra of **NBD-H** in different pH of 10 mM buffer solution in absence of these metal ions (black line) and in presence of (a) Hg^{II} and (b) Cu^{II} (2 equiv.) (red line)

Figure S14. Color change of **NBD-H**-PEG-PS (100 μ M) in 10 mM HEPES buffer (pH 7.4) with increasing concentration of Cu^{II} and/or 300 μ M EDTA.