Supplementary data

Theory

Square Wave Voltammetry

Square wave voltammetry (SWV) is an electrochemical technique that is currently being used in a wide variety of analytical chemistry fields\(^1\)-\(^3\). It is well known that SWV offers a number of advantages over linear sweep, normal, and differential pulse excitation signals\(^3\)-\(^4\). Many articles can be found in the literature citing SWV applications in biochemistry\(^5\), pharmaceutical products\(^6\)-\(^7\), veterinary formulations\(^8\), natural waters\(^9\), trace quantity of metals\(^10\)-\(^11\), organic phase biosensors\(^12\), food chemistry\(^13\), and so also in cosmetics\(^14\).

The theoretical aspects of SWV are well documented in literature\(^15\), here it is only recalled that the excitation signal in SWV consists of a symmetrical square-wave pulse of amplitude \(E_{sw}\) superimposed on a staircase waveform of step height \(\Delta E\), where the forward pulse of the square wave coincides with the staircase step. The net current, \(i_{net}\), is obtained by taking the difference between the forward and reverse currents \((i_{for} - i_{rev})\) and is centered on the redox potential. The peak height is directly proportional to the concentration of the electroactive species. The equation which relates the voltammetric peak high to the analyte concentration is:

\[
i_{net} = k' \frac{n^2 F^2}{RT} \Delta EC
\]

where \(k'\) is a constant, \(C\) is the electrolyte concentration, \(n\) the number of electrons, \(F\) the Faraday’s constant, \(R\) the thermodynamic gas constant, \(T\) the absolute temperature and \(\Delta E\) is the amplitude of the potential or of square wave.

In this study Ti\(^{4+}\) species are reduced to the Ti\(^{3+}\) state in acid media and well formed voltammograms and accurate current readings are obtainable with the HMDE\(^16\)-\(^17\). Quantitative information are obtained with good sensitivity and selectivity by a single potential scan and employing an appropriate supporting electrolyte and applying the standard addition method\(^15\).

Field Flow Fractionation techniques

The theory of these separation techniques is also well known and documented in literature\(^18\)-\(^20\) so that in this paragraph only the mathematical relations which relate the retention time, which is experimentally measured, with the particle sizes are reported.

The observed retention ratio \(R\) is defined as the ratio between the residence time of an un-retained species \(t^0\) and the retention time of a retained species \(t_R\), i.e.

\[
R = \frac{t^0}{t_R}
\]

In FIFFF, where the applied field is a cross flow, when \(R\) is lower than 0.15\(^18\), the retention time \(t_R\) is directly proportional to the particle’s hydrodynamic diameter \(d\), i.e. the diameter of a sphere defined by the particle rotating in all directions plus the hydration layer, which diffuses with the same speed as the particle under examination, according the simplified expression\(^18\):

\[
t_R = t^0 \frac{\pi \eta w^2 Q d}{2kTV^0}
\]

where \(\eta\) is the carrier viscosity, \(w\) the channel thickness, \(Q\) the applied cross flow (expressed as volumetric flow rate), \(k\) the Boltzmann constant, \(T\) the absolute temperature during elution, \(V^0\) the channel void volume.
In SdFFF the external applied field consists in a centrifugal force, then the retention time t_R is proportional to the cubic of diameter d:

$$t_R = t^0 \frac{\omega^2 rw\pi \Delta \rho d^3}{36kT}$$

(3)

where ω is the angular velocity expressed as $\omega = 2\pi (\text{rpm}/60) \ (s^{-1})$, r the radius of the centrifuge from rotation axis to the channel, $\Delta \rho$ is the difference between the particle ρ_p and the carrier medium ρ_c densities.

When a sample contains particles covering a very broad range of diameters, it become advantageous to change the field strength as the run proceeds so that eluting species at different times are subject to different average field strengths. There are several forms of field programming, but the only one which yields uniform fractionation power\(^21\) throughout a broad diameter range is

$$G(t) = G_0 \left[\frac{(t_1 - t_a)}{(t - t_a)} \right]^p$$

(4)

where G is the centrifugal field strength, which is kept constant at G_0 for a time t_1; the optimum condition (yielding uniform resolution) is obtained when $t_a = -pt_1$, and $p = 8$. When power programming is used, between t_R and d the following relation exists

$$t_R - t_a \propto d^{1/3}$$

(5)

Methods

P-25 microwave assisted digestion: Method 1

Six different aliquots of Aerosol TiO\textsubscript{2} Degussa P-25 were accurately weighed (see Table 1) into clean, dry TFM vessels, to which 2 mL of concentrated HNO\textsubscript{3}, 3 mL of HF and 4 mL of H\textsubscript{2}O were added. The TFM vessels were sealed, placed in a high-pressure rotor, and then in the microwave oven for which an optimized digestion program was employed (see Table S4). At the end of the digestion program, the samples were left to cool, transferred to volumetric flask (100 mL) without filtering and diluted with deionised water. The acidic solutions were kept in PE-HD containers.

Foundation sampling method

According to the “Cosmetic legislation, volume 2 – Methods of Analysis”\(^22\) the foundations were sampled as “Basic sample”, i.e. a unit taken from a batch offered for sale. The cosmetic products were sampled in their original containers and forwarded to the analytical laboratory unopened. Basic samples were all stored in the dark at 25 °C, the extracted suspensions in the refrigerator at 4°C. Since the basic samples were all creams (semi-solid), the containers were shaken, the test portions extruded, and the containers resealed immediately.

Foundation cream microwave-assisted digestion: Method 2

In order to mineralize the foundation cream, “Method 1” has been slightly modified as following: to at about 0.1g of sample were added 2 ml of concentrated HNO\textsubscript{3} and 4 mL HF, following the procedure described in the previous paragraph; the microwave program is reported in Table S4. At the end of the digestion program, the samples were left to cool, transferred to volumetric flask (50 mL) without filtering, and diluted with deionised water. For the exact foundation weights see Table 2 and 3 in the main text.
Foundation cream: TiO$_2$ particle solvent extraction

TiO$_2$ particles were extracted with a ternary mixture of solvents (water/methanol/hexane) as done in a previous work16, however since the sample were different, also in this study the most suitable ratio among the solvents was determined through a set of preliminary experiments in which different volumes of water, methanol and hexane were mixed. Table 4 reports the data while the procedure can be summarized as follows: a weighed amount of foundation was dispersed in water and mixed for 60 s with the ultrasound probe set at 50% of maximum nominal power; after the addition of methanol, the suspension was mixed again for 60 s with the ultrasonic probe, transferred in a separation funnel where the hexane was added; the suspension was vigorous shaken to favor the mixing, and left to equilibrate for 1 hour then the two phases were separated. The aqueous phase was kept for the mineralization, the ICP-AES determinations, the SdFFF, FlFFF separations and TEM observations. The whole procedure was performed at room temperature (23-24 °C).

Since the methanol might switch off the torque during the ICP-AES analysis performed on the slurries or it could be an annoying interfering agent during the mineralization process, it was always removed from the samples by evaporation under N$_2$ atmosphere, and the lost volume substituted with deionised water. When concentrated sample slurries were necessary, the methanol was eliminated by evaporation at 70°C.

Aqueous phase microwave-assisted digestion: Method 3

To mineralize the TiO$_2$ particles contained in the aqueous phases achieved by the solvent extraction procedure, the following optimized method was applied. All mineralization were done inside of clean, dry TFM vessels, and the applied microwave oven program is reported in Table S4.

To a 2.5 mL of extracted sample were added 2 mL of concentrated HNO$_3$, 3 mL of concentrated HF; the vessels were allowed to cool, then 1.5 g of H$_3$BO$_3$ was added to each of them, and they were returned to the microwave oven for 5 min at a power of 300 W.

Also in this case, the cooled samples were transferred to volumetric flask (50 mL) without filtering and diluted with deionised water.

SWV analysis procedure

Quantitative determinations were performed with standard additions method on the sample, digested as above, appropriately diluted with the supporting electrolyte (See next paragraph) in the polarographic cell; the analyzed volume was always 20 mL.

The P-25 and the foundation mineralized solutions were diluted 1:100 (sample volume 200 μL); the extracted mineralized solutions were analyzed after a dilution 1:10 or “as it”, for very diluted samples. The supporting electrolyte solution was a mixture of oxalic acid H$_2$C$_2$O$_4$ 0.25 M and H$_3$BO$_3$ 0.20 M. The final pH value of the sample solution was always <2.

The instrumental experimental conditions were the following: Start potential = 0 mV and end potential = -700 mV both vs.Ag/AgCl/KCl sat; wave amplitude = 80 mV; wave period = 40 ms; wave increment = 10 mV; sampling time = 8 ms; purge and stir time = 600 s; stirring speed = 400 r.p.m.; drop size = 60 a.u.

SWV method: choice of the supporting electrolyte solution

Examples of accurate and rapid determination of Ti$^{4+}$ at trace levels in acidic media by voltammetry at the DME are reported in literature23,24, so that the SWV method can be considered a good alternative for quantifying the TiO$_2$ in commercial foundations to the more established ICP-AES method, which is surely rapid but very expensive.
A preliminary check was done by using only oxalic acid 0.25 M as supporting electrolyte and an aqueous solution of Ti\(^{4+}\); the Ti\(^{4+}\) reduction to Ti\(^{3+}\) was observed at \(E_p = -280\, \text{mV} \) (vs. Ag/AgCl/KCl sat) and the current intensity and the peak position were not sensitive to oxalic acid concentration up to 1 M.

In order to verify all the conditions for the analysis of the mineralized foundations, 2 mL of blank reagents solution (concentrated HNO\(_3\), concentrated HF and deionised H\(_2\)O) were diluted with 18 mL of supporting electrolyte solution (oxalic acid 0.25 M – dilution ratio of 10). The dilution is required because of the high TiO\(_2\) content in the foundation and especially since the cell is not HF resistant. Figure S1a), curve A shows the result of this check, in which a shift of 100 mV in the peak position was observed (about \(E_p = -380\, \text{mV} \) vs. Ag/AgCl/KCl sat); since the low pH of the solution was not enough to justify such a difference in the peak potential, the presence of an interfering ion, concentrated enough to give a peak at -380 mV which completely hid the Ti\(^{4+}\) signal was supposed. The solution was analyzed by GF-AAS, which confirmed a contamination due to Pb\(^{2+}\), coming from the N\(_2\) used to de-aerate the solution before the measurements. To prove it, a sequence of purging of 5 min each was done on the acidic solution and the result are reported in Figure S1b); after 40 min of degassing about 7 mg L\(^{-1}\) of lead were detected in the solution. The hypothesis was that F\(^-\) could complex the Pb\(^{2+}\) as PbF\(_4\)\(^{2-}\); to impede this reaction, a weighed amount of H\(_3\)BO\(_3\) able to capture the excess of F\(^-\) ions, was added to the oxalic acid 0.25 M solution to get a 0.20 M concentration (see Figure S1a) and 1c), curve B). When an addition of Ti\(^{4+}\) standard was done to this new solution, the Ti\(^{4+}/Ti^{3+}\) peak reduction was registered at -260 mV (see Figure S1c), curve C).

The electrolyte solution to dilute all the mineralized foundation samples was a mixture of C\(_2\)O\(_4\)H\(_2\)·H\(_2\)O 0.25 M and H\(_3\)BO\(_3\) 0.20 M.

Voltammetric determinations: mineralized TiO\(_2\) Aerioxide Degussa P-25 powder

Figure S2a) shows a series of square wave voltammograms for the reduction of Ti\(^{4+}/Ti^{3+}\). The weaker peak is due to the sample, while the following more intense peaks are due to the addition of Ti\(^{3+}\) standards (5, 10, 15, 20, 25 mg L\(^{-1}\) respectively). The net current profiles are gaussian-shaped and symmetrical, which indicated a reversible process; the peak potentials \(E_p = -280\, \text{mV} \) coincided with the potential registered when the Ti\(^{4+}\) standard was tested. All the standard addition curves had a correlation coefficient very close to 1, as that one reported as example on the top of the plot.

Voltammetric determinations: mineralized foundation samples

Figure S2b) reports as example a series of voltammograms registered for Sample #1, they were also for this “real” sample bell-shaped and symmetrical with the peak potentials close to the experimental value (\(E_p = -280\, \text{mV} \) vs Ag/AgCl) determined with the Ti\(^{4+}\) standard solution. Also for this sample the standard addition curves had a correlation coefficient very close to 1, as that one reported as example on the top of the plot.

Figure S4a) reports as example a series of voltammograms registered for Sample #6, in which are visible the interfering peak of Cu\(^{2+}\) (\(E_p = -100\, \text{mV} \)) on the left of the Ti\(^{4+}\) peak (\(E_p = -280\, \text{mV} \)) and a scarcely visible shoulder on the right, likely due to Pb\(^{2+}\) (\(E_p = -360\, \text{mV} \)). Analogous voltammograms were recorded during the analysis of Sample #4. It is reasonable to suppose that the perturbation in the baseline due to the Cu\(^{2+}\) peak introduced a bias, which affected the Ti determinations; in Figure S4b) is shown as example the Cu\(^{2+}\) determination done on Sample #6, which assessed a Cu contamination of the order of 1.7 mg L\(^{-1}\).
Table S1: List of the studied foundation creams

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Commercial sample</th>
<th>Sold in: Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MaxFactor - Facefinity with permawear – SPF 15</td>
<td>USA</td>
</tr>
<tr>
<td>2</td>
<td>MaxFactor - Lasting Performance</td>
<td>IT</td>
</tr>
<tr>
<td>3</td>
<td>MAYBELLINE – Affinitone</td>
<td>IT</td>
</tr>
<tr>
<td>4</td>
<td>MAYBELLINE - Instant Liss’ Result - SPF 18</td>
<td>IT</td>
</tr>
<tr>
<td>5</td>
<td>CLINIQUE - Instant Liss’ Result - SPF 18</td>
<td>IT</td>
</tr>
<tr>
<td>6</td>
<td>RIMMEL</td>
<td>IT</td>
</tr>
</tbody>
</table>

Table S2: SdFFF programmed field parameters

<table>
<thead>
<tr>
<th>Program</th>
<th>Initial RPM</th>
<th>Relaxation time(min)</th>
<th>t₁ (min)</th>
<th>t₂ (min)</th>
<th>Final RPM</th>
<th>Hold RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>350</td>
<td>10</td>
<td>8</td>
<td>-64</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>500</td>
<td>10</td>
<td>8</td>
<td>-64</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table S3: Operating conditions and instrumentation of the ICP-AES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF generator</td>
<td>40 MHz, free – running</td>
</tr>
<tr>
<td>RF power</td>
<td>1350 W</td>
</tr>
<tr>
<td>Torch type</td>
<td>Fassel type</td>
</tr>
<tr>
<td>Injector, id</td>
<td>Alumina, 2.0 mm</td>
</tr>
<tr>
<td>Viewing mode</td>
<td>Axial</td>
</tr>
<tr>
<td>Auxiliary argon flow rate</td>
<td>0.50 L min⁻¹</td>
</tr>
<tr>
<td>Nebulizer argon flow rate</td>
<td>0.65 L min⁻¹</td>
</tr>
<tr>
<td>Plasma gas flow rate</td>
<td>15 L min⁻¹</td>
</tr>
<tr>
<td>Spray chamber type</td>
<td>Cyclonic buffled</td>
</tr>
<tr>
<td>Sample introduction</td>
<td>Peristaltic pump</td>
</tr>
<tr>
<td>Sample uptake flow rate</td>
<td>1.5 mL min⁻¹</td>
</tr>
<tr>
<td>Detector</td>
<td>Segmented-array charge-coupled (SCD)</td>
</tr>
</tbody>
</table>

Table S4. Temperature Microwave Program for the Aeroxide Degussa P-25 and foundation mineralization.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Power (W)</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>Power (W)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>250</td>
<td>120</td>
<td>1</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
<td>190</td>
<td>1</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>220</td>
<td>5</td>
<td>250</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>220</td>
<td>4</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>550</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>300</td>
<td>200</td>
</tr>
</tbody>
</table>
References

Figure S1:

a) SWV of 18 ml C$_2$O$_4$H$_2$ 0.25 M + 2 ml reagent blank solution, $E_p = -380$ mV, $I_p = 7$ µA (curve A); 18 ml C$_2$O$_4$H$_2$ 0.25, H$_3$BO$_3$ + 2 ml reagent blank solution after 5 min N$_2$ purge (curve B).

b) SWV of 18 ml deionised water + 2 ml reagent blank solution, each voltammogram was recorder after having purged the solution with N$_2$ for 5 min; $E_p = -380$ mV.

c) SWV : 18 ml C$_2$O$_4$H$_2$ 0.25 M + 2 ml reagent blank solution (B); spiked with 50 µg of Ti$^{4+}$ $E_p = -260$ mV, $I_p = 10$ µA (C).
Figure S2: a) SWV of the Degussa P-25 sample, after acid digestion, and dilution with H$_2$C$_2$O$_4$ 0.25M + H$_3$BO$_3$ 0.20M: standard addition of Ti$^{4+}$ (5, 10, 15, 20, 25 mg L$^{-1}$).

Figure S2: b) SWV of Sample #1, after acid digestion and dilution 1:10 with H$_2$C$_2$O$_4$ 0.25M + H$_3$BO$_3$ 0.20M: standard addition of Ti$^{4+}$.

Figure S2
Figure S3: Photograph of the mineralized solutions achieved from Samples #1, 2, 3, 4, 5, 6.
Figure S4: a) SWV of Sample #6 after acid digestion and dilution 1:100 with H$_2$C$_2$O$_4$ 0.25M + H$_3$BO$_3$ 0.20M: standard addition of Ti$^{4+}$ (5,10,15,20,25 mg L$^{-1}$) in presence of Pb$^{2+}$ (Ep = -360 mV) and Cu$^{2+}$ (Ep = -100 mV).

Figure S4: b) Example of Cu$^{2+}$ determination in Sample #6 (diluted 1:10); standard addition of Cu$^{2+}$ = 1.25, 2.50, 3.75, 5.00 mg L$^{-1}$.
Figure S5: Photograph of the extracted concentrated suspensions (aqueous phases) of Samples #1, 2, 3, 4, 5, 6.