Highly sensitive and selective fluorescent assay for quantitative detection of divalent copper ion in environmental water samples

Haiyan Caoa, Wenbing Shia,b, Jianxin Xiea,c and Yuming Huanga,*

a The Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education); College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China. Fax: +86 23 68254843; Tel: +86 23 68254843; E-mail: ymhuang@swu.edu.cn

b College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, Fuling 408003, P.R. China

c College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100, China
Figure S 1. Hydrodynamic diameter distributions of the the \(p \)-cresol–hydrogen peroxide-Cu(II) system in different conditions. (A): NH\(_3\)–NH\(_4\)Cl buffer (pH 11.0±0.2); (B): Borax–Na\(_2\)CO\(_3\) buffer (pH 11.0±0.2); (C): NaHCO\(_3\)–Na\(_2\)CO\(_3\) buffer (pH 11.0±0.2); (D): glycine–NaOH buffer (pH 11.0±0.2); (E): Na\(_3\)PO\(_4\)–Na\(_2\)HPO\(_4\) buffer (pH 11.0±0.2); (F): without buffer. Conditions: \(p \)-cresol concentration: \(2.0 \times 10^{-5} \) mol L\(^{-1} \); Cu\(^{2+} \) concentration: \(3.0 \times 10^{-5} \) mol L\(^{-1} \); Hydrogen peroxide concentration: \(1.0 \times 10^{-6} \) mol L\(^{-1} \).
Figure S 2. Effect of Cu(NH$_3$)$_4^{2+}$ on p-cresol oxidation by hydrogen peroxide in 0.04 mol L$^{-1}$ NH$_3$–NH$_4$Cl buffer (pH 11.0±0.2). Conditions: p-cresol concentration: 2.0×10$^{-5}$ mol L$^{-1}$; Hydrogen peroxide concentration: 2.0×10$^{-6}$ mol L$^{-1}$.