Highly sensitive and selective fiber-optic modal interferometric sensor for detecting trace mercury ion in aqueous solution

Mingjie Yina, Bobo Gub, Jinwen Qiana,*, A. Ping Zhangb, Quanfu Ana, and Sailing Heb,c

aMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China

bCenter for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058, China

cDivision of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, S-100 44 Stockholm, Sweden

*Corresponding author: J.-W. Qian; Tel: +86-571-87953780; E-mail: qianjw@zju.edu.cn
Fig. S1. The performance of TCFMI mercury ion sensor tested at pH=1 HgCl₂ solutions: a) Spectrum of TCFMI before (solid line) and after (dashed line) the deposition of (P4VP-HCl/PSS)₁₀ multilayers; b) The response of the fabricated TCFMI mercury sensor to different HgCl₂ solution concentration. The inset shows the measured spectra.
Fig. S2. The performance of TCFMI mercury ion sensor tested at pH=3 HgCl$_2$ solutions: a) Spectrum of TCFMI before (solid line) and after (dashed line) the deposition of (P4VP·HCl /PSS)$_{10}$ multilayers; b) The response of the fabricated TCFMI mercury sensor to different HgCl$_2$ solution concentration. The inset shows the measured spectra.
Fig. S3. The performance of TCFMI mercury ion sensor tested at pH=8 HgCl$_2$ solutions: a) Spectrum of TCFMI before (solid line) and after (dashed line) the deposition of (P4VP·HCl /PSS)$_{10}$ multilayers; b) The response of the fabricated TCFMI mercury sensor to different HgCl$_2$ solution concentration. The inset shows the measured spectra.