Supporting Information

Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles

Zhihe Qing, Xiaoxiao He*, Kemin Wang *, Zhen Zou, Xue Yang, Jin Huang and Genping Yan

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, P.R.China.

*Address correspondence to these authors at: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China. Tel: 86-731-88821566; Fax: 86-731-88821566; E-mail: kmwang@hnu.edu.cn, xiaoxiaohe@hnu.edu.cn
Supplementary figures:

(A) UV-vis absorption spectrum and (B) corresponding photograph of the UMDP absorbed AuNPs in the presence of different concentrations of NaCl. The corresponding concentrations were labeled at the bottom of the photograph.
Figure S2 Plot of absorption ratio (A_{700}/A_{520}) of AuNPs solution versus Hg$^{2+}$ (A) and Ag$^+$ (B) ions concentrations. Inset: derived calibration curve. Error bars were obtained from three experiments.
Figure S3 UV–vis absorption spectra of AuNPs solution treated with different ions in the absence of EDTA (A) and in the presence of 100 μM of EDTA (B). The concentration of Hg$^{2+}$ and Ag$^{+}$ ions was 5 μM. The concentration of other metal ions was 50 μM.
Figure S4 Colorimetric response of the UMDP /AuNPs multiplexed sensing system in the presence of different concentrations of Hg$^{2+}$ and Ag$^+$ ions in the tap water (A) and the lake water (B). The corresponding concentrations were labeled at the bottom of the photograph.