Supporting Information

A Novel Method for Cetylpyridinium Bromide Determination in Aqueous Solution Based on Fluorescence Quenching of Dye

Fengting Huang, Xiangfeng Guo*, Lihua Jia*, Rui Yang

Corresponding author. Address: Key Laboratory of Fine Chemicals of College of Heilongjiang Province, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.

Corresponding author. Mobile: 86 0452 2742563 (X. Guo); 86 0452 2742563 (L. Jia).

Corresponding author. Email address: xfguo@163.com (X. Guo), jlh29@163.com (L. Jia)

Content

1. Fluorescence behavior of CXT vs. pH

2. Fluorescence decay profile of CXT

3. Fluorescence decay profile of CXT/CPB
1. Fluorescence behavior of CXT vs. pH

![Fluorescence spectra of CXT vs. pH](image)

Fig. S11 Fluorescence spectra of the CXT (5.0 μM) in aqueous solution of Brij 35 (1.2 mM) at different pH values.

2. Fluorescence decay profile of CXT

![Fluorescence decay profile of CXT](image)

Fig. S12 Fluorescence decay profile of CXT (5.0 μM) in aqueous solution of Brij 35 (1.2 mM) at pH 8.0. $\lambda_{em} = 444$ nm, EX/EM slit = 13.0 / 13.0 nm.

3. Fluorescence decay profile of CXT/CPB
Fig. S13 Fluorescence decay profile of CXT/CPB (5.0 μM/ 20 μM) in aqueous solution of Brij 35 (1.2 mM) at pH 8.0. $\lambda_{em} = 444$ nm, EX / EM slit = 13.0 / 13.0 nm.