Supporting information

Design and synthesize a chemosensor for the detection of Al^{3+} based on ESIPT

Jing-can Qin, Zheng-yin Yang*, Long Fan, Xiao-ying Cheng, Tian-rong Li, Bao-dui Wang

College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

**Corresponding author. Tel.: +86 931 8913515; Fax: +86 931 8912582; e-mail: yangzy@lzu.edu.cn (Z.Y. Yang)
Fig. S1 The 1H NMR of ethyl 2-methyl quinoline-4-carboxylate
Fig. S2 The 1H NMR of 2-methyl quinoline-4-carboxylic acid hydrazide.
Fig. S3 The 1H NMR of HL.
Fig. S4 The ESI-MS spectra of HL.
Fig. S5 The ESI-MS spectra of HL and Al$^{3+}$.
Fig. S6 1H NMR titration, Al$^{3+}$ (1.0 equiv.) was added to the DMSO-d$_6$ solution of HL.

Fig. S7 The IR spectra of HL.
Fig. S8 The IR spectra of HL and Al$^{3+}$.
Fig. S1 The 1H NMR of ethyl 2-methyl quinoline-4-carboxylate
Fig. S2 The 1H NMR of 2-methyl quinoline-4-carboxylic acid hydrazide.
Fig. S3 The 1H NMR of HL.
Fig. S4 The ESI-MS spectra of HL.
Fig. S5 The ESI-MS spectra of HL and Al$^{3+}$.
Fig. S6 1H NMR titration, Al$^{3+}$ (1.0 equiv.) was added to the DMSO-d$_6$ solution of HL.
Fig. S7 The IR spectra of HL.
Fig. S8 The IR spectra of HL and Al$^{3+}$.