Supplementary Information

Electrochemical sensor for endocrine disruptor bisphenol A based on a glassy carbon electrode modified with silica and nanocomposite prepared from reduced graphene oxide and gold nanoparticle

Enli Liu, Xiaoli Zhang*

*School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

*Tel: +8653188361318. Fax: +8653188564464

*Email: zhangxl@sdu.edu.cn
Fig. S1. EDS spectra of district I and II
Fig. S2 Effect of content of SiO$_2$ nanoparticles on the peak current of 100 μM BPA
Fig. S3 (A) Cyclic voltammograms of 1.0×10^{-5} mol·L$^{-1}$ BPA at SiO$_2$/rGO-AuNPs/GCE at different scan rate (from a to f: 40, 80, 120, 160, 200 and 240 mV·s$^{-1}$); Insets were the plots of peak currents vs. the scan rates. (B) The plots of peak potentials vs. the natural logarithm of scan rates.