HYPHENATION OF SINGLE-DROP MICROEXTRACTION WITH LASER-INDUCED BREAKDOWN SPECTROSCOPY FOR TRACE ANALYSIS IN LIQUID SAMPLES: A VIABILITY STUDY

M.A. Aguirre, a H. Nikolova, b M. Hidalgo a,* and A. Canals a

Fig. S1  Pareto charts obtained from the Plackett-Burman design for the different emission lines evaluated.
Fig. 2  Response surfaces and contour plots for ZnII (202.458 nm) emission line using the circumscribed central composite design obtained by plotting: (a) pH vs. droplet volume (extraction time: 10 min) (b) pH vs. extraction time (droplet volume: 7.5 µL); (c) extraction time vs. droplet volume (pH: 10).
**Fig. S3**  Response surfaces and contour plots for MnII (259.373 nm) emission line using the circumscribed central composite design obtained by plotting: (a) pH vs. droplet volume (extraction time: 10 min) (b) pH vs. extraction time (droplet volume: 7.5 µL); (c) extraction time vs. droplet volume (pH: 10).
Fig. S4  Response surfaces and contour plots for CuI (324.754 nm) emission line using the circumscribed central composite design obtained by plotting: (a) pH vs. droplet volume (extraction time: 10 min) (b) pH vs. extraction time (droplet volume: 7.5 µL); (c) extraction time vs. droplet volume (pH: 10).
Fig. S5  Response surfaces and contour plots for NiI (352.454 nm) emission line using the circumscribed central composite design obtained by plotting: (a) pH vs. droplet volume (extraction time: 10 min) (b) pH vs. extraction time (droplet volume: 7.5 µL); (c) extraction time vs. droplet volume (pH: 10).
Fig. S6  Response surfaces and contour plots for CrI (357.869 nm) emission line using the circumscribed central composite design obtained by plotting: (a) pH vs. droplet volume (extraction time: 10 min) (b) pH vs. extraction time (droplet volume: 7.5 µL); (c) extraction time vs. droplet volume (pH: 10).