The design of a simple fluorescent chemosensor for Al$^{3+}$/Zn$^{2+}$ via two different approaches

Jing-can Qin, Long, Fan, Bao-dui Wang, Zheng-yin Yang*, Tian-Rong Li

College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

**Corresponding author. Tel.: +86 931 8913515; Fax: +86 931 8912582; e-mail: yangzy@lzu.edu.cn (Z.Y. Yang)

Fig. S1 The 1H NMR of 7-amino-4-methyl coumarin

Fig. S2. The 1H NMR of HL

Fig. S3. The ESI-MS spectra of HL

Fig. S4 The IR spectra of HL.

Fig. S5. Changes in the absorption spectra of AMC (0-25 μM) in ethanol and water (95:5, v/v) at room temperature

Fig. S6. Changes in the absorption spectra of DHB (25 μM) in ethanol and water (95:5, v/v) at room temperature as a function of added Al$^{3+}$.

Fig. S7. The detection limits for Al$^{3+}$ based on 3σ/K

Fig. S8. The color of HL (left) and HL+Zn$^{2+}$ (right) system under visible light.

Fig. S9. Fluorescence intensity of HL and its complexation with Zn$^{2+}$ in the presence of various metal ions. Red bar: HL (25 μM); HL with 1.0 equiv. of Na$^+$, Pb$^{2+}$, Ca$^{2+}$, K$^+$, Ba$^{2+}$, Hg$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Cr$^{3+}$, Ni$^{2+}$, Fe$^{2+}$, Fe$^{3+}$, and Cu$^{2+}$, stated. Green
bar: 25 μM of HL with 1.0 equiv. of Zn2+; 25μM of HL and 1.0 equiv. of Zn2+ with 1.0 equiv. of metal ions stated (λ\textsubscript{ex}=405nm, slit widths:3nm /3nm).

Fig. S10. Benesi-Hildebrand analysis of the emission changes for the complexation between HL and Zn2+

Fig. S11. The detection limits for Zn2+ based on 3σ/K

Fig. S12. The ESI-MS spectra of HL and Al3+

Fig. S13. 1H NMR titration, Al3+ was added to the DMSO-d\textsubscript{6} solution of HL

Fig. S14. The ESI-MS spectra of HL and Zn2+
Fig. S1 The 1H NMR of 7-amino-4-methyl coumarin
Fig. S2. The 1H NMR of HL
Fig. S3. The ESI-MS spectra of HL
Fig. S4 The IR spectra of HL.
Fig. 5. Changes in the absorption spectra of AMC (0-25 μM) in ethanol and water (95:5, v/v) at room temperature
Fig. S6. Changes in the absorption spectra of DHB (25 μM) in ethanol and water (95:5, v/v) at room temperature as a function of added Al$^{3+}$.
Fig. S7. The detection limits for Al$^{3+}$ based on 3σ/K
Fig. S8. The color of HL (left) and HL+Zn$^{2+}$ (right) system under visible light.
Fig. S9. Fluorescence intensity of HL and its complexation with Zn$^{2+}$ in the presence of various metal ions. Red bar: HL(25 μM); HL with 1.0 equiv. of Na$^+$, Pb$^{2+}$, Ca$^{2+}$, K$^+$, Ba$^{2+}$, Hg$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Cr$^{3+}$, Ni$^{2+}$, Fe$^{2+}$, Fe$^{3+}$, and Cu$^{2+}$, stated. Green bar: 25 μM of HL with 1.0 equiv. of Zn$^{2+}$; 25μM of HL and 1.0 equiv. of Zn$^{2+}$ with 1.0 equiv. of metal ions stated ($\lambda_{ex}=405$nm, slit widths:3nm /3nm).
Fig. S10. Benesi-Hildebrand analysis of the emission changes for the complexation between HL and Zn^{2+}
Fig. S11. The detection limits for Zn2+ based on 3σ/K.
Fig. S12. The ESI-MS spectra of HL and Al$^{3+}$
Fig. S13. 1H NMR titration: Al$^{3+}$ was added to the DMSO-d$_6$ solution of HL
Fig. S14. The ESI-MS spectra of HL and Zn$^{2+}$