Supporting Information

Direct detection of histamine in fish flesh using microchip electrophoresis with capacitively coupled contactless conductivity detection

Leigh D. Thredgolda, Amanda V. Ellisa, and Claire E. Lenehanb

a Flinders Centre for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide 5001, Australia.

b School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia E-mail: claire.lenehan@flinders.edu.au
Effect of increasing BGE ionic strength

Fig S1: Electropherograms of a standard containing the biogenic amines histamine (10 mg L\(^{-1}\)), tyramine (10 mg L\(^{-1}\)) and 2-phenylethylamine (10 mg L\(^{-1}\)) using (a) 25 mM HEPES/5 mM histidine BGE in 5% v/v isopropanol (pH 6.32), (b) 50 mM HEPES/10 mM histidine BGE in 5% v/v isopropanol (pH 6.31) and (c) 100 mM HEPES/20 mM histidine BGE in 5% v/v isopropanol (pH 6.30). Operating conditions: microchip 57/37 mm total/effective length; injection voltage 1.0 kV for 5 s; separation voltage 1.4 kV. CD detector: sine waveform of 216 kHz 10 V_{p-p}.

Effect of increasing ratio of HEPES:His at the higher BGE concentration

Fig S2: Electropherograms of a standard containing the biogenic amines histamine (10 mg L\(^{-1}\)), tyramine (10 mg L\(^{-1}\)) and 2-phenylethylamine (10 mg L\(^{-1}\)) using (a) 50 mM HEPES/10 mM histidine (5:1) BGE in 5% v/v isopropanol (pH 6.31), (b) 50 mM HEPES/5 mM histidine (10:1) BGE in 5% v/v isopropanol (pH 6.03) and (c) 50 mM HEPES/2.5 mM histidine (20:1) BGE in 5% v/v isopropanol (pH 6.01). Operating conditions: as per Fig. S1.
Fig S3: Electropherograms of a tuna flesh extract (a) without spike and (b) with a 47.5 µg/g histamine spike using 50 mM HEPES/5 mM histidine BGE in 5% v/v isopropanol (pH 6.03). Operating conditions: as per Fig. S1