A facile fabrication of upconversion luminescent and mesoporous core/shell structured β-NaYF₄:Yb³⁺, Er³⁻@mSiO₂ nanocomposite spheres for anti-cancer drug delivery and cell imaging

Chunxia Li, Zhiyao Hou, Yunlu Dai, Dongmei Yang, Ziyong Cheng, Ping’an Ma* and Jun Lin*

Figure S1 The size distribution of β-NaYF₄:Er³⁺/Yb³⁺ core (a) and core-shell structured β-NaYF₄:Er³⁺/Yb³⁺@mSiO₂ (b) by dynamic light scattering.
Figure S2 The digital photograph (A) of UCNPs dispersed in cyclohexane under daylight with a ruler. And other digital photographs and luminescence photographs dispersed in cyclohexane (B) and water (C) were obtained using the same magnification and bottles.

Figure S3 The upconversion emission spectrum of UCNPs@mSiO₂ nanoparticles dispersed in water.
Figure S4 The digital photographs of UCNPs@mSiO$_2$ (a), UCNPs@mSiO$_2$-PEG (b), and UCNPs@mSiO$_2$-PEG/FA (c) dispersed in water.

Figure S5 The concentration of Y$^{3+}$ internalized in HeLa cells measured by ICP-OES technique after incubated with UCNPs@mSiO$_2$-PEG/FA (FA+) and UCNPs@mSiO$_2$-PEG (FA-).