Supporting Information

Preparation and Biological Characterization of Fe₃O₄@C Nanocapsules as Drug Carriers with pH-Triggered Drug Release and MRI Properties

Kai Chengᵃ⁺, Zhiyuan Sunᵃ⁺, Yumei Zhouᵇ, Hao Zhongᵃ, Zhen Guoᵇ⁺, Qianwang Chenᵇ

ᵃ Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China.
b Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China

Fig. S1 (a) XPS spectrum of sample; (b) The expanded XPS spectrum of Fe 2p.
Fig. S2 (a) Nitrogen adsorption-desorption isotherm of Fe$_3$O$_4@$C nanocapsules; (b) mesopore distribution of Fe$_3$O$_4@$C calculated by BJH method.
Fig. S3 Magnetic hysteresis loop of the Fe$_3$O$_4$@C nanocapsules and the insert is the enlarged drawing around the original point.
Fig. S4 Raman spectrum of Fe$_3$O$_4$@C nanocapsules
Fig. S5 Confocal laser microscopic observation of MCF-7 cells cultured with free DOX or DOX-HMNPs for 24h. The dose of DOX or its equivalent was 5 μg/mL in the cell culture. The cells were counterstained with DAPI (blue) for the cell nucleus.