Supporting Information for:

A highly selective fluorescence probe for sulfide ions based on aggregation of Cu nanoclusters induced emission enhancement

By Zenghe Li, Song Guo and Chao Lu*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Fax/Tel: 86 010 64411957
Fig. S1 XPS spectra of the as–prepared Cu NCs before and after the addition of 50 μM S^{2-}.
Fig. S2 (A) Effect of temperature on fluorescence emission intensity at 460 nm of the as-prepared Cu NCs in the absence of H$_2$S. (B) Effect of pH on fluorescence emission intensity at 460 nm of the as-prepared Cu NCs in the absence of H$_2$S. Error bars were estimated from three independent measurements.
Fig. S3 Effect of salt with a concentration of 50 μM on the fluorescent properties of the as-prepared Cu NCs in the absence and presence of 50 μM S²⁻. All experiments were carried out at 30 °C for 5 min at pH 7.00. Error bars were estimated from three independent measurements.
Fig. S4 Effect of buffer solutions on the fluorescence of the as-prepared Cu NCs in the absence and presence of 50 μM S²⁻ at pH 7.00. The experiments were taken at 30 °C for 5 min. Error bars were estimated from three independent measurements.