Supplementary Information

pFe$^{3+}$ Determination of Multidentate Ligands by a Fluorescence Assay

Yongmin Ma, Tao Zhou and Robert C Hider

Structures of Ligands

L1

L2

L3
L13: \(R_1 = \text{CH}_3, \; R = \text{CH}_3 \)

L14: \(R_1 = \text{n-C}_3\text{H}_7, \; R = \text{C}_2\text{H}_5 \)

L15: \(R_1 = \text{CH}_3\text{O(\text{CH}_2\text{CH}_2\text{O})}_2\text{CH}_2, \; R_1 = \text{C}_2\text{H}_5 \)

L16: \(R_1 = \text{CH}_3, \; R = \text{n-C}_4\text{H}_9 \)

L17: \(R_1 = \text{n-C}_3\text{H}_7, \; R = \text{n-C}_4\text{H}_9 \)

L18: \(R_1 = \text{CH}_3\text{O(\text{CH}_2\text{CH}_2\text{O})}_2\text{CH}_2, \; R = \text{n-C}_4\text{H}_9 \)

L19: \(R_1 = \text{CH}_3\text{O(\text{CH}_2\text{CH}_2\text{O})}_2\text{CH}_2, \; R = \text{n-C}_6\text{H}_{13} \)

L20: \(R_1 = \text{n-C}_3\text{H}_7, \; R = \text{CH}_2\text{CH}_2\text{OH} \)

L21: \(R = \text{CH}_2\text{CH}_2\text{OH} \)
L22

L23

L24: Polymer of L23 and iron binding capacity at 291 µmol/g.
Calculation of unknown pFe value of hexadentate ligand based on the pFe value of the competing ligand and the relative fluorescence

Hexadentate ligands have simple equilibrium constants as indicated in Eq. 1 and 2. The competition between the two hexadentate ligands for iron is presented in Eq. 3.

\[\text{Fe} + \text{L}_1 \xrightleftharpoons{K_1} \text{FeL}_1 \quad \text{Eq. 1} \]

\[\text{Fe} + \text{L}_2 \xrightleftharpoons{K_2} \text{FeL}_2 \quad \text{Eq. 2} \]

\[\text{FeL}_1 + \text{L}_2 \xrightleftharpoons{K} \text{L}_1 + \text{FeL}_2 \quad \text{Eq. 3} \]

The equilibrium constants \(K_1, K_2 \) and \(K \) can be written as follows:

\[K_1 = \frac{[\text{FeL}_1]}{[\text{Fe}][\text{L}_1]} \]

\[K_2 = \frac{[\text{FeL}_2]}{[\text{Fe}][\text{L}_2]} \]

\[K = \frac{[\text{L}_1][\text{FeL}_2]}{[\text{FeL}_1][\text{L}_2]} \]

If \(\text{L}_1 \) represents CP691 and \(\text{L}_2 \) represents DFO, then based on the exponential curve in Figure 3, at 50% relative fluorescence, the ratio of \([\text{L}_2]_{\text{total}} / [\text{L}_1]_{\text{total}} = 125 \). As \([\text{L}_1]_{\text{total}} = [\text{Fe}]_{\text{total}} = 6 \mu\text{M} \), then \([\text{L}_2]_{\text{total}} = 750 \mu\text{M} \), and the point of 50% fluorescence occurs at \([\text{L}_1] = 3 \mu\text{M} \).

As \([\text{L}_1]_{\text{total}} = [\text{L}_1] + [\text{FeL}_1] \),

\([\text{FeL}_1] \) can be calculated by the equation \([\text{FeL}_1] = [\text{L}_1]_{\text{total}} - [\text{L}_1] = 3 \mu\text{M} \)

As \([\text{Fe}]_{\text{total}} = [\text{Fe}] + [\text{FeL}_1] + [\text{FeL}_2] \) and the ligands are in excess and [Fe] is very low, \([\text{FeL}_2] \approx [\text{Fe}]_{\text{total}} - [\text{FeL}_1] = 3 \mu\text{M} \).

As \([\text{L}_2]_{\text{total}} = [\text{L}_2] + [\text{FeL}_2] \), so \([\text{L}_2] = [\text{L}_2]_{\text{total}} - [\text{FeL}_2] = 750 - 3 = 747 \mu\text{M} \).

Therefore, \(K = (3 \mu\text{M} \times 3 \mu\text{M})/(3 \mu\text{M} \times 747 \mu\text{M}) = 1 / 249 \)

As \(K = [\text{L}_1][\text{FeL}_2] / [\text{FeL}_1][\text{L}_2] = ([\text{L}_1](K_2[\text{Fe}]][\text{L}_2]) / (K_1[\text{Fe}][\text{L}_1][\text{L}_2]) = K_2 / K_1 \)
At the condition of $[L] = 10 \mu M$, $[\text{Fe}] = 1 \mu M$ and pH 7.4, $[\text{Fe}] = 2.5 \times 10^{-27} \mu M$ when $L = \text{DFO (pFe}^{3+} = 26.6)$,

Thus $K_2 = [\text{FeL}_2] / [\text{Fe}][\text{L}_2] = 1 \mu M / (2.5 \times 10^{-27} \mu M \times 9 \mu M)$

$K_1 = [\text{FeL}_1] / [\text{Fe}][\text{L}_1] = 1 \mu M / ([\text{Fe}]_{L_1} \times 9 \mu M) \ (\text{L}_1 = \text{CP691})$

So $[\text{Fe}]_{L_1} = 1 / (9K_1) = 1 / (9 \times (K_2 / K)) = K / (9K_2) = (1 / 249) / (9 \times (1 / (9 \times 2.5 \times 10^{-27} \mu M))) = 1 \times 10^{-29} \mu M$

Therefore, $p\text{Fe}_{L_1} = 29.0$. In fact, the $p\text{Fe}_{L_1}$ value can be calculated from any point on the exponential curve. The average value of the $p\text{Fe}$ calculated from the experimental ratio points is 28.8.